A Berkovich-analytic approach to models of curves over DVRs

Daniele Turchetti

University of Warwick

YRANT III (Virtual) Bristol – 19th August, 2021

Berkovich curves and models

8 Regular models and Saito's criterion

Berkovich analytification

Let $(K, |\cdot|_{\kappa})$ be a complete non-archimedean field, $R = \{x \in K : |x|_{\kappa} \le 1\}$, $\mathfrak{m} = \{x \in K : |x|_{\kappa} < 1\}$, and $k = R/\mathfrak{m}$.

Let $(K, |\cdot|_{\kappa})$ be a complete non-archimedean field, $R = \{x \in K : |x|_{\kappa} \le 1\}$, $\mathfrak{m} = \{x \in K : |x|_{\kappa} < 1\}$, and $k = R/\mathfrak{m}$.

Examples

- $K = \mathbb{Q}_p, R = \mathbb{Z}_p, k = \mathbb{F}_p$
- $K = \mathbb{C}_{\rho}, R = \mathcal{O}_{\mathbb{C}_{\rho}}, k = \overline{\mathbb{F}}_{\rho}$
- k any field, K = k((t)), R = k[[t]]
- K any field, with the trivial valuation, R = K, k = K.

Let $(K, |\cdot|_{\kappa})$ be a complete non-archimedean field, $R = \{x \in K : |x|_{\kappa} \le 1\}$, $\mathfrak{m} = \{x \in K : |x|_{\kappa} < 1\}$, and $k = R/\mathfrak{m}$.

Examples

- $K = \mathbb{Q}_p, R = \mathbb{Z}_p, k = \mathbb{F}_p$
- $K = \mathbb{C}_{\rho}, R = \mathcal{O}_{\mathbb{C}_{\rho}}, k = \overline{\mathbb{F}}_{\rho}$
- k any field, K = k((t)), R = k[[t]]
- K any field, with the trivial valuation, R = K, k = K.

Let X be a variety over K. Its Berkovich analytification X^{an} is the set of pairs $(x, |\cdot|)$ with $x \in X$ and $|\cdot| : \kappa(x) \to \mathbb{R}_{\geq 0}$ absolute value extending $|\cdot|_{\mathcal{K}}$.

Remark

- X^{an} can be endowed with the structure of a locally ringed space (topology + structure sheaf),
- $X \to X^{\mathrm{an}}$ can be made into a functor

Global structure

Let C be a smooth projective curve over K. The analytification C^{an} retracts on a finite graph, called the skeleton of C.

Global structure

Let *C* be a smooth projective curve over *K*. The analytification C^{an} retracts on a finite graph, called the skeleton of *C*.

Local structure

There are 4 types of points in a Berkovich curve:

- Type 1: $(x, |\cdot|_{\kappa(x)})$ with $x \in C$ closed point.
- Type 2: the points $y \in C^{an}$ with a neighborhood V such that $V \setminus y$ has an infinite number of connected components
- Type 3: the points $y \in C^{an}$ with a neighborhood V such that $V \setminus y$ has two connected components
- Type 4: the points $y \in C^{an}$ with a neighborhood V such that $V \setminus y$ is connected and y is not of type 1.

Types of points

Let K be a discretely valued field. Let C be a smooth projective curve over K.

Definition

A model of C is a flat, proper curve C over R such that $C \times_R K \cong C$. The k-scheme $C_k := C \times_R k$ is called the special fiber of C, while C is its generic fiber.

Let K be a discretely valued field. Let C be a smooth projective curve over K.

Definition

A model of C is a flat, proper curve C over R such that $C \times_R K \cong C$. The k-scheme $C_k := C \times_R k$ is called the special fiber of C, while C is its generic fiber.

Proposition

There is an order preserving bijection: {normal models of C} \longleftrightarrow {non-empty finite subsets of C^{an} containing only type 2 points}

 ${\mathcal C}$ normal model of ${\mathcal C}$

Let $x \in S$ be a type 2 point. The multiplicity m(x) of the irreducible component $C_{k,x}$ corresponding to x does not depend on the choice of a model!

- \mathcal{C}_k is reduced
- C_k has at most double nodal singularities.

- C_k is reduced
- C_k has at most double nodal singularities.

Theorem (Deligne - Mumford, 1969)

There exists a finite extension L|K such that $C_L := C \times_K L$ has a semi-stable model.

- C_k is reduced
- C_k has at most double nodal singularities.

Theorem (Deligne - Mumford, 1969)

There exists a finite extension L|K such that $C_L := C \times_K L$ has a semi-stable model.

Idea (Bosch – Lütkebohmert, 1985)

 C_L has a semi-stable model if and only if C_L^{an} can be decomposed into a union of open discs and a finite number of annuli.

- C_k is reduced
- C_k has at most double nodal singularities.

Theorem (Deligne - Mumford, 1969)

There exists a finite extension L|K such that $C_L := C \times_K L$ has a semi-stable model.

Idea (Bosch – Lütkebohmert, 1985)

 C_L has a semi-stable model if and only if C_L^{an} can be decomposed into a union of open discs and a finite number of annuli.

Question

What is the minimal extension L|K such that C_L has a semi-stable model?

Minimal triangulations

Definition

A triangulation of C^{an} is a finite set $S \subset C^{an}$ such that $C^{an} \setminus S$ is a union of virtual discs and finitely many virtual annuli.

Proposition

If the genus g(C) is at least two, then C^{an} has a minimal triangulation $S_{\min-tr}$.

Minimal triangulations

Definition

A triangulation of C^{an} is a finite set $S \subset C^{an}$ such that $C^{an} \setminus S$ is a union of virtual discs and finitely many virtual annuli.

Proposition

If the genus g(C) is at least two, then C^{an} has a minimal triangulation S_{min-tr} .

Theorem (Fantini – T., 2020)

• The minimal extension L|K yielding semi-stability is the minimal extension "resolving the multiplicities" at all points of S_{min-tr}

$$d := \operatorname{lcm}\{m(x) : x \in S_{\min-tr}\} | [L : K]$$

 $I|K is tame if and only if p \nmid d$

Minimal triangulations

Definition

A triangulation of C^{an} is a finite set $S \subset C^{an}$ such that $C^{an} \setminus S$ is a union of virtual discs and finitely many virtual annuli.

Proposition

If the genus g(C) is at least two, then C^{an} has a minimal triangulation S_{min-tr} .

Theorem (Fantini – T., 2020)

• The minimal extension L|K yielding semi-stability is the minimal extension "resolving the multiplicities" at all points of S_{min-tr}

$$d := \operatorname{lcm}\{m(x) : x \in S_{\min-tr}\} | [L : K]$$

 $I|K is tame if and only if p \nmid d$

Elements of proof

- Behaviour of S_{min-tr} after base-change
- Explicit descriptions of tame forms of discs and annuli (Ducros '13, Fantini T. '18)

Resolution of singularities for surfaces \implies There exists a regular model of C (no need to base-change!).

In fact, there is a minimal regular model with strict normal crossings $C_{min-snc}$ (which induces a set of type 2 points $S_{min-snc} \subset C^{an}$).

Resolution of singularities for surfaces \implies There exists a regular model of C (no need to base-change!).

In fact, there is a minimal regular model with strict normal crossings $C_{min-snc}$ (which induces a set of type 2 points $S_{min-snc} \subset C^{an}$).

Definition

An irreducible component of a model C is called principal if it is of genus > 0 or if it intersects the rest of C in at least three points. The quantity

 $e(C) = \operatorname{lcm}\{m(E) : E \text{ is a principal component of } C_{min-snc}\}$

is the stabilization index of C.

Theorem (Fantini - T., 2020)

If L|K is tamely ramified, then S_{min-tr} is the subset of principal points of $S_{min-snc}$.

Theorem (Fantini - T., 2020)

If L|K is tamely ramified, then S_{min-tr} is the subset of principal points of $S_{min-snc}$.

As a corollary, we get a different proof of:

Theorem (Takeshi Saito 1987, Halle 2010)

The minimal extension L|K yielding semi-stability is tamely ramified if and only if (e(C), p) = 1.

Theorem (Fantini - T., 2020)

If L|K is tamely ramified, then S_{min-tr} is the subset of principal points of $S_{min-snc}$.

As a corollary, we get a different proof of:

Theorem (Takeshi Saito 1987, Halle 2010)

The minimal extension L|K yielding semi-stability is tamely ramified if and only if (e(C), p) = 1.

Question (wide open)

What happens when L|K is wild?

A curve *C* over *K* is called Mumford curve if it has a semi-stable model *C* such that the irreducible components of C_k are projective lines.

Theorem (Mumford 1972)

C is a Mumford curve \iff there exists an open dense subset $O \subset \mathbb{P}^{1,\mathrm{an}}_{K}$ and a free group $\Gamma \subset PGL_2(K)$ with $\Gamma \setminus O \cong C^{\mathrm{an}}$.

A curve *C* over *K* is called Mumford curve if it has a semi-stable model *C* such that the irreducible components of C_k are projective lines.

Theorem (Mumford 1972)

C is a Mumford curve \iff there exists an open dense subset $O \subset \mathbb{P}^{1,\mathrm{an}}_{K}$ and a free group $\Gamma \subset PGL_2(K)$ with $\Gamma \setminus O \cong C^{\mathrm{an}}$.

Theorem (Berkovich 1990)

C is a Mumford curve of genus $g\iff C^{\rm an}$ admits a continuous retraction on a graph of Betti number g.

Question (Halle-Nicaise)

Let C be a form of a Mumford curve, of index one and let L|K be the minimal extension yielding semi-stable reduction. Do we have [L : K] = e(C)?

Question (Halle–Nicaise)

Let C be a form of a Mumford curve, of index one and let L|K be the minimal extension yielding semi-stable reduction. Do we have [L : K] = e(C)?

Theorem (Obus-T., 2021)

- There exist C as above such that $[L:K] \neq e(C)$
- Let C be a form of a Mumford curve and let L|K be the minimal extension yielding semi-stable reduction. Then e(C) | [L : K].

Elements of proof.

- Uniformization of $C_L^{\rm an}$
- Action of $\operatorname{Gal}(L|K)$ over C_L^{an} (global and local!)
- Resolution of quotient singularities in the weak wild case (Obus-Wewers).

Thank you!