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Let
E(C)={[x:y:2] € P¢:2zy> = x* + az’x + b2’}

for some a, b € C with 423 4 27b% # 0.

Uniformization of E
E(C) is a group, isomorphic to C/A, where A = w1 Z @ wyZ is a lattice:




This isomorphism is of an analytic nature:

C/\ — E(C)
WH{[p(wm'(w):l] if w0
[0:1:0] ifw=0

where p is the meromorphic Weierstrass p-function.
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What if we replace C with a non-archimedean field (k,|-])?
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Arithmetic analytic geometry

1960’'s John Tate introduces rigid analytic geometry and non-archimedean
uniformization of elliptic curves

1970's Michel Raynaud links rigid spaces and formal geometry

~1990 Vladimir Berkovich conceives a new theory using spaces of valuations and
spectral theory

1990’'s Roland Huber's adic spaces generalize Berkovich's theory
~2010 Jérdome Poineau develops the theory of Berkovich spaces over Z



Arithmetic analytic geometry

1960's

1970's
~1990

1990's
~2010

John Tate introduces rigid analytic geometry and non-archimedean
uniformization of elliptic curves

Michel Raynaud links rigid spaces and formal geometry

Vladimir Berkovich conceives a new theory using spaces of valuations and
spectral theory

Roland Huber's adic spaces generalize Berkovich's theory
Jérdme Poineau develops the theory of Berkovich spaces over Z
What for?

Arithmetic geometry: local Langlands program (étale cohomology on
Berkovich spaces) and p-adic Hodge theory (Scholze's perfectoid spaces)

Classical and combinatorial algebraic geometry (via connections to toric
and tropical geometries)

String theory (degeneration of Calabi-Yau, mirror symmetry, SYZ fibration)
Dynamical systems and potential theory (dynamics on Berkovich spaces)
p-adic differential equations (radii of convergence on Berkovich curves)
Diophantine problems (via Arakelov geometry and tropical curves)

Inverse Galois problem



Let (A, ||-||) be a commutative Banach ring with unit. Let n € N.

The analytic space A} is

o the set of multiplicative semi-norms |- |: A[T1,..., To] = R+
bounded on A,
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The Berkovich analytic space A,

Let (A,]-||) be a commutative Banach ring with unit. Let n € N.

The analytic space A" is

@ the set of multiplicative semi-norms | - | : A[T1,..., T,] = Ry
bounded on A,

@ endowed with the coarsest topology such that that the evaluations

eve AR — Ry
|- —If]

are continuous for every f € A[Ty ..., T,],
@ and with a structure sheaf of rings: U — &(U).



The space Ay™" is Hausdorff, locally compact, and locally
path-connected.




n,an

The Berkovich analytic space A,

Theorem (Berkovich)

The space Ay™" is Hausdorff, locally compact, and locally
path-connected.

To each x € A;™, we associate a complete residue field
H(x) ;= completion of the fraction field of A[T1,..., T,]/Ker(|-|x)
and the resulting evaluation map

Xx: A[T1,..., Tp] = H(x).



H =R |[%)

A =(Q] o)

H = (Qp |];)
H = (Fp,[o)




Pg" y? = x(x — 1)(x — p)



. . . 1
There is a canonical morphism pr: P;?" — Aoz’a‘n and

Vx € Ag’an, pri(x) ~ P;’;ZX).



There is a canonical morphism pr: P;’a" — Aoz’a‘n and

Vx € AY™ pri(x) ~ P;’;?X).

Let D be the open unit disk in Py®". Then H(D, ) is a ring of
convergent arithmetic power series (D. Harbater):

HO(Da 0) = Z|[T]]1—
= {f € Z[ T] with complex radius of convergence > 1}.
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Tate and Mumford’s theorems

Let k be a complete non-archimedean field [e.g. k = Q,, C((t)), Fp((t))]-

Theorem (Tate)

Let E/k be an elliptic curve with split multiplicative reduction. Then
E?" = k> /g% for some q € k with 0 < |q| < 1.

Theorem (Mumford)

Let X /k a smooth projective curve of genus g whose Jacobian has
totally degenerate reduction. Then there exist Q C Pi’an open dense
subset and I C PGLy(k) free of rank g such that Q/I = X2,
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Let E/k be an elliptic curve with split multiplicative reduction. Then
E?" = k> /g% for some q € k with 0 < |q| < 1.

Theorem (Mumford)

Let X /k a smooth projective curve of genus g whose Jacobian has
totally degenerate reduction. Then there exist Q C Pi’an open dense
subset and I C PGLy(k) free of rank g such that Q/I = X2,

Aim
Build a “universal” theory of uniformization, that works for every valued
field (archimedean and non-archimedean) at once.




Let (k,|-|) be a complete valued field. Let ' be a subgroup of PGLy(k).
It acts on P;*".



Schottky groups

Let (k,|-|) be a complete valued field. Let ' be a subgroup of PGL;(k).
It acts on P;*".

A Schottky group over k is a subgroup I' C PGL,(k) that satisfies:
@ [ is finitely generated
o [ is free
@ non-trivial elements of [ are hyperbolic

o the locus of P;™ where I acts discontinuously is non-empty.

Fact

The complement £ of the discontinuity locus, called the limit set, is
compact and contains only k-rational points.




To v € PGLy(k) hyperbolic, we associate
@ a € PI(k) its attracting fixed point;
e o' € P1(k) its repelling fixed point;
@ 3 € k the quotient of its eigenvalues with absolute value < 1.

For o, o/, 8 € k with |3| € (0,1), we have

7= Moo, 8) = %7 5 (%;ngl



Let g > 2. The Schottky space .7 is the subset of A3¥~>*" consisting

of the points
/ ’
Z= (X37‘"7Xg7X25"'7Xg7y1""7.yg)

such that the subgroup of PGLy(.7(z)) defined by
rz = <M(0’ Oou.yl)? M(].,Xé,yz), M(X37X?,,ay3)7 ey M(Xgaxéa}’g»

is a Schottky group.



Schottky space

Let g > 2. The Schottky space .7, is the subset of A3ng73,an consisting
of the points
Z = (X3, Xg, Xg5 -3 Xg Y1+ -5 Vg)

such that the subgroup of PGLy(.77(z)) defined by
I_z = <M(07 00,}/1)a M(laxéay2)7 M(X37X§7}/3)7 ) M(ngxé7)/g)>
is a Schottky group.

Proposition (Poineau - T.)

For every (k,|-|) and every Schottky group ' C PGLy(k) of rank g,
there is a point z € ., Xz k such that [, = h=!Th, h € PGLy(k).




Schottky space

Let g > 2. The Schottky space .7, is the subset of A3ng73,an consisting
of the points
Z = (X3, Xg, Xg5 -3 Xg Y1+ -5 Vg)

such that the subgroup of PGLy(.77(z)) defined by
I_z = <M(07 00,}/1)a M(laxéay2)7 M(X37Xé>y3)7 ) M(ngxé7)/g)>
is a Schottky group.

Proposition (Poineau - T.)

For every (k,|-|) and every Schottky group ' C PGLy(k) of rank g,
there is a point z € ., Xz k such that [, = h=!Th, h € PGLy(k).

Theorem (Poineau - T.)

The Schottky space ., is a connected open subset of A ~>*".




Universal Mumford curve

Denote by (X, ..., Xg, X3,..., Xz, Y1,..., Yg) the coordinates
n AZ~3" and consider the subgroup of PGLy(€(.%)):

[ = (M(0,00, Y1), M(L, X}, Y2), M(X3, X3, Y3), ..., M(Xg, X, Ye))-

Theorem (Poineau - T.)

There exists a closed subset £ of P;?n 1= S X pm(z) Py™ and a
relative curve %y — S5 that is universally uniformized by T.

Theorem (Poineau - T.)

The group Out(Fg) acts analytically and properly discontinuously on .7
with finite stabilizers. The quotient Mumfy := Out(Fg)\-%5 is a
(singular) analytic space over Z whose non-archimedean locus
parametrizes Mumford curves.




What's next?

@ Singularities and homotopy type of Mumfy, relationships with
tropical moduli (Chan-Galatius-Payne) and outer space
(Culler-Vogtmann)

Hausdorff dimension and capacity of limit sets
Steinness of .75

Periods (gij)1<i,j<g of Mumford curves (Manin-Drinfeld) over Z

g-expansions of modular forms
Schottky problem (= characterizing Jacobians among Abelian
varieties)

@ GauB-Manin connections
Picard-Fuchs equations (Gerritzen):

du; dq,,J
for1<i<g, ( ) Zﬁj qi,j
V(Bi) =
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Let g = 1.
Schottky group over k — I ~ ( (0 1) ), with g € k,0 < [g| <1
Schottky space — .4 = D° := {x € Ay™ : 0 < |T(x)| < 1}

Universal Tate curve — 27 = (Aljflm —{0,00})/T?

The sheaf Q:}%/ﬁ is globally generated by d?s where S is a parameter for
1,an
Ay‘: :



g-expansion of modular forms

Let w := W*Q'l%/yl and f € HO(.7, w®k).
Then f = ¢ - (2)X, with ¢ € H'(A, 0) = Z[T]i-[+].

One can use this to find Fourier expansions of classical modular forms,

thanks to the diagram:
% S é"&n

|
S — X(N)

where & is the universal generalized elliptic curve over the modular curve
X(N) (Deligne-Rapoport, Katz-Mazur).



M, moduli space of smooth and proper curves of genus g

m: Cg = Mg universal curve over M,

A= /\g T‘-*Q]ég/Mg



M, moduli space of smooth and proper curves of genus g

m: Cg = Mg universal curve over M,

A= /\g T‘-*Q]ég/Mg

A Teichmiiller modular form of genus g and weight k over a ring R is an
element of

Tg(R) := H'(Mg ® R, A%X).




Teichmiiller modular forms (g > 1)

Mg moduli space of smooth and proper curves of genus g

m: Cg = Mg universal curve over M,
— A& Ol
A= N

Definition
A Teichmiiller modular form of genus g and weight k over a ring R is an

element of
Tok(R) == H(M, ® R, \®¥).

The Torelli map 7 gives rise to
T Sg7k(R) — Tg_’k(R),

where Sz «(R) denotes the ring of Siegel modular forms over R.



T. Ichikawa (1994) defined an expansion map
1

X,'—Xj

kr: Tgk(R) — R|:X:|:1,...,X:|:g, ]|[y1,...,yg]|.
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1972)



Expansions

T. Ichikawa (1994) defined an expansion map

1
KR: Tg’k(R) - R X411y -y Xtg, ‘

X; *XJi||[y1’7yg]]

@ This could be upgraded to
KR Tg)k(R) — R®O(Sg)

providing additional convergence conditions

o related to the Fourier expansions of Siegel modular forms
(using Yu. Manin - V. Drinfeld “Periods of p-adic Schottky groups”,
1972)

@ may be helpful for the Schottky problem
(characterizing Jacobian varieties among Abelian varieties)



Thank you for your attention!
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Genus 3

X18 € S3.18(Z) product of Thetanullwerte with even characteristics

Theorem (S. Tsuyumine, 1991 + T. Ichikawa, 2000)
There exists g € T3 9(Z) such that

7" (x18) = M3~

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010)

Let k C C. Let A/k be a principally polarized indecomposable Abelian
threefold that is isomorphic to a Jacobian over C.




Genus 3

X18 € S3.18(Z) product of Thetanullwerte with even characteristics
Theorem (S. Tsuyumine, 1991 + T. Ichikawa, 2000)
There exists g € T3 9(Z) such that

7" (x18) = M3~

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010)

Let k C C. Let A/k be a principally polarized indecomposable Abelian
threefold that is isomorphic to a Jacobian over C.
Then, A is isomorphic to a Jacobian over k if, and only if,

X18(A) € k2.
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Action of Out(Fy)

Let o € Aut(F;) act on the generators of ', as on those of F,.
The action factors through Out(Fg).

Lemma
For each z € Sz, we have

Stab(z) ~ T, \N(';) = Aut(C,)

(with equality in the non-Archimedean case).

Theorem (Poineau - T. , in progress)

The action of Out(Fg) on Sg is analytic and properly discontinuous.

The quotient Out(Fgz)\Sg

@ is the space of Mumford curves (inside M) on the non-Archimedean
part;
@ surjects onto M, on the Archimedean part.



The Outer Space CV, is a space of metric graphs X of genus g endowed
with a marking (isomorphism F; = 71(X)).
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curve of genus g over k retracts onto a canonical “skeleton” that is a
metric graph of genus g.



Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)

The Outer Space CV, is a space of metric graphs X of genus g endowed
with a marking (isomorphism F, = 71(X)).

Applications:
e CV; is contractible
e vcd(Fg) =2g—3

Let (k,|-|) be a complete non-Archimedean valued field. Each Mumford
curve of genus g over k retracts onto a canonical “skeleton” that is a
metric graph of genus g.

We have a continuous surjective map

Sg7k — CVg XM;rop I\/Iumfg,k.

See also M. Ulirsch “Non-Archimedean Schottky Space and its
Tropicalization”, 2020



