Moduli spaces of Mumford curves over \mathbf{Z}

Daniele Turchetti

Dalhousie University

QNTAG
July 2, 2020

Outline

(1) Schottky uniformization of curves
(2) Berkovich spaces over \mathbf{Z}
(3) Universal Mumford curves over \mathbf{Z}
(4) Application to modular forms

Outline

(1) Schottky uniformization of curves
(2) Berkovich spaces over \mathbf{Z}
(3) Universal Mumford curves over \mathbf{Z}
(4) Application to modular forms

Uniformization of complex elliptic curves

Let

$$
E(\mathbf{C})=\left\{[x: y: z] \in \mathbf{P}_{\mathbf{C}}^{2}: z y^{2}=x^{3}+a z^{2} x+b z^{3}\right\}
$$

for some $a, b \in \mathbf{C}$ with $4 a^{3}+27 b^{2} \neq 0$.

Uniformization of E

$E(\mathbf{C})$ is a group, isomorphic to \mathbf{C} / Λ, where $\Lambda=\omega_{1} \mathbf{Z} \oplus \omega_{2} \mathbf{Z}$ is a lattice:

Schottky uniformization over C

This isomorphism is of an analytic nature:

$$
\begin{aligned}
\mathbf{C} / \Lambda & \rightarrow E(\mathbf{C}) \\
w & \mapsto \begin{cases}{\left[\wp(w): \wp^{\prime}(w): 1\right]} & \text { if } w \neq 0 \\
{[0: 1: 0]} & \text { if } w=0\end{cases}
\end{aligned}
$$

where \wp is the meromorphic Weierstrass \wp-function.

Schottky uniformization over C

This isomorphism is of an analytic nature:

$$
\begin{aligned}
\mathbf{C} / \Lambda & \rightarrow E(\mathbf{C}) \\
w & \mapsto \begin{cases}{\left[\wp(w): \wp^{\prime}(w): 1\right]} & \text { if } w \neq 0 \\
{[0: 1: 0]} & \text { if } w=0\end{cases}
\end{aligned}
$$

where \wp is the meromorphic Weierstrass \wp-function.

$$
E(\mathbf{C}) \simeq \mathbf{C} /(\mathbf{Z}+\mathbf{Z} \tau) \xrightarrow[\sim]{\exp (2 \pi i \cdot)} \mathbf{C}^{*} / q^{\mathbf{Z}}
$$

with $\operatorname{Im}(\tau)>0$ and $q=\exp (2 \pi i \tau)$.

Schottky uniformization over C

This isomorphism is of an analytic nature:

$$
\begin{aligned}
\mathbf{C} / \Lambda & \rightarrow E(\mathbf{C}) \\
w & \mapsto \begin{cases}{\left[\wp(w): \wp^{\prime}(w): 1\right]} & \text { if } w \neq 0 \\
{[0: 1: 0]} & \text { if } w=0\end{cases}
\end{aligned}
$$

where \wp is the meromorphic Weierstrass \wp-function.

$$
E(\mathbf{C}) \simeq \mathbf{C} /(\mathbf{Z}+\mathbf{Z} \tau) \xrightarrow[\sim]{\exp (2 \pi i \cdot)} \mathbf{C}^{*} / \mathbf{q}^{\mathbf{Z}}
$$

with $\operatorname{Im}(\tau)>0$ and $q=\exp (2 \pi i \tau)$.
Theorem (Koebe Rückkehrschnitt theorem)
Let $X^{\text {an }}$ be a compact Riemann surface of genus g. There exist $\Omega \subset \mathbf{C}$ open dense and $\Gamma \subset \mathrm{PGL}_{2}(\mathbf{C})$ free of rank g, such that $\Omega / \Gamma \cong X^{a n}$.

Schottky uniformization over C

This isomorphism is of an analytic nature:

$$
\begin{aligned}
\mathbf{C} / \Lambda & \rightarrow E(\mathbf{C}) \\
w & \mapsto \begin{cases}{\left[\wp(w): \wp^{\prime}(w): 1\right]} & \text { if } w \neq 0 \\
{[0: 1: 0]} & \text { if } w=0\end{cases}
\end{aligned}
$$

where \wp is the meromorphic Weierstrass \wp-function.

$$
E(\mathbf{C}) \simeq \mathbf{C} /(\mathbf{Z}+\mathbf{Z} \tau) \xrightarrow[\sim]{\exp (2 \pi i \cdot)} \mathbf{C}^{*} / \mathbf{q}^{\mathbf{Z}}
$$

with $\operatorname{Im}(\tau)>0$ and $q=\exp (2 \pi i \tau)$.
Theorem (Koebe Rückkehrschnitt theorem)
Let $X^{\text {an }}$ be a compact Riemann surface of genus g. There exist $\Omega \subset \mathbf{C}$ open dense and $\Gamma \subset \mathrm{PGL}_{2}(\mathbf{C})$ free of rank g, such that $\Omega / \Gamma \cong X^{a n}$.

What if we replace \mathbf{C} with a non-archimedean field $(k,|\cdot|)$?

Outline

(1) Schottky uniformization of curves
(2) Berkovich spaces over \mathbf{Z}
(3) Universal Mumford curves over \mathbf{Z}

4 Application to modular forms

Arithmetic analytic geometry

1960's John Tate introduces rigid analytic geometry and non-archimedean uniformization of elliptic curves
1970's Michel Raynaud links rigid spaces and formal geometry
~1990 Vladimir Berkovich conceives a new theory using spaces of valuations and spectral theory
1990's Roland Huber's adic spaces generalize Berkovich's theory
~2010 Jérôme Poineau develops the theory of Berkovich spaces over Z

Arithmetic analytic geometry

1960's John Tate introduces rigid analytic geometry and non-archimedean uniformization of elliptic curves
1970's Michel Raynaud links rigid spaces and formal geometry
~1990 Vladimir Berkovich conceives a new theory using spaces of valuations and spectral theory
1990's Roland Huber's adic spaces generalize Berkovich's theory
~2010 Jérôme Poineau develops the theory of Berkovich spaces over Z

What for?

- Arithmetic geometry: local Langlands program (étale cohomology on Berkovich spaces) and p-adic Hodge theory (Scholze's perfectoid spaces)
- Classical and combinatorial algebraic geometry (via connections to toric and tropical geometries)
- String theory (degeneration of Calabi-Yau, mirror symmetry, SYZ fibration)
- Dynamical systems and potential theory (dynamics on Berkovich spaces)
- p-adic differential equations (radii of convergence on Berkovich curves)
- Diophantine problems (via Arakelov geometry and tropical curves)
- Inverse Galois problem
- ...

The Berkovich analytic space $\mathbf{A}_{A}^{n, a n}$

Let $(A,\|\cdot\|)$ be a commutative Banach ring with unit. Let $n \in \mathbf{N}$.
The analytic space $\mathbf{A}_{A}^{n, \text { an }}$ is

- the set of multiplicative semi-norms $|\cdot|: A\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathbf{R}_{+}$ bounded on A,

The Berkovich analytic space $\mathbf{A}_{A}^{n, a n}$

Let $(A,\|\cdot\|)$ be a commutative Banach ring with unit. Let $n \in \mathbf{N}$.
The analytic space $\mathbf{A}_{A}^{n, \text { an }}$ is

- the set of multiplicative semi-norms $|\cdot|: A\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathbf{R}_{+}$ bounded on A,
- endowed with the coarsest topology such that that the evaluations

$$
\begin{aligned}
\mathrm{ev}_{f}: \mathbf{A}_{A}^{n, \mathrm{an}} & \longrightarrow \mathbf{R}_{+} \\
|\cdot| & \longmapsto|f|
\end{aligned}
$$

are continuous for every $f \in A\left[T_{1} \ldots, T_{n}\right]$,

The Berkovich analytic space $\mathbf{A}_{A}^{n, \text { an }}$

Let $(A,\|\cdot\|)$ be a commutative Banach ring with unit. Let $n \in \mathbf{N}$.
The analytic space $\mathbf{A}_{A}^{n, \text { an }}$ is

- the set of multiplicative semi-norms $|\cdot|: A\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathbf{R}_{+}$ bounded on A,
- endowed with the coarsest topology such that that the evaluations

$$
\begin{aligned}
\mathrm{ev}_{f}: \mathbf{A}_{A}^{n, \mathrm{an}} & \longrightarrow \mathbf{R}_{+} \\
|\cdot| & \longmapsto|f|
\end{aligned}
$$

are continuous for every $f \in A\left[T_{1} \ldots, T_{n}\right]$,

- and with a structure sheaf of rings: $U \rightarrow \mathscr{O}(U)$.

The Berkovich analytic space $\mathbf{A}_{A}^{n, a n}$

Theorem (Berkovich)
The space $\mathbf{A}_{A}^{n, \text { an }}$ is Hausdorff, locally compact, and locally path-connected.

The Berkovich analytic space $\mathbf{A}_{A}^{\text {n,an }}$

Theorem (Berkovich)
The space $\mathbf{A}_{A}^{n, \text { an }}$ is Hausdorff, locally compact, and locally path-connected.

To each $x \in \mathbf{A}_{A}^{n \text {,an }}$, we associate a complete residue field
$\mathscr{H}(x):=$ completion of the fraction field of $A\left[T_{1}, \ldots, T_{n}\right] / \operatorname{Ker}\left(|\cdot|_{x}\right)$ and the resulting evaluation map

$$
\chi_{x}: A\left[T_{1}, \ldots, T_{n}\right] \rightarrow \mathscr{H}(x)
$$

$\mathbf{A}_{\mathbf{Z}}^{0, \text { an }}$

Berkovich curves over \mathbf{Q}_{p}

The analytic line $\mathbf{P}_{\mathbf{Z}}^{1, \text { an }}$

There is a canonical morphism pr: $\mathbf{P}_{\mathbf{Z}}^{1, a n} \rightarrow \mathbf{A}_{\mathbf{Z}}^{0, \text { an }}$ and

$$
\forall x \in \mathbf{A}_{\mathbf{Z}}^{0, \mathrm{an}}, \operatorname{pr}^{-1}(x) \simeq \mathbf{P}_{\mathscr{H}(x)}^{1, a n}
$$

The analytic line $\mathbf{P}_{\mathbf{Z}}^{1, a n}$

There is a canonical morphism pr: $\mathbf{P}_{\mathbf{Z}}^{1, \text { an }} \rightarrow \mathbf{A}_{\mathbf{Z}}^{0, \text { an }}$ and

$$
\forall x \in \mathbf{A}_{\mathbf{Z}}^{0, \mathrm{an}}, \operatorname{pr}^{-1}(x) \simeq \mathbf{P}_{\mathscr{H}(x)}^{1, a n}
$$

Let \mathbf{D} be the open unit disk in $\mathbf{P}_{\mathbf{Z}}^{1, a n}$. Then $H^{0}(\mathbf{D}, \mathcal{O})$ is a ring of convergent arithmetic power series (D. Harbater):

$$
\begin{aligned}
H^{0}(\mathbf{D}, \mathcal{O}) & =\mathbf{Z} \llbracket T \rrbracket_{1^{-}} \\
& =\{f \in \mathbf{Z} \llbracket T \rrbracket \text { with complex radius of convergence } \geqslant 1\} .
\end{aligned}
$$

Outline

(1) Schottky uniformization of curves
(2) Berkovich spaces over \mathbf{Z}
(3) Universal Mumford curves over \mathbf{Z}
4. Application to modular forms

Tate and Mumford's theorems

Let k be a complete non-archimedean field [e.g. $\left.k=\mathbf{Q}_{p}, \mathbf{C}((t)), \mathbf{F}_{p}((t))\right]$.
Theorem (Tate)
Let E / k be an elliptic curve with split multiplicative reduction. Then $E^{a n} \cong k^{\times} / q^{Z}$ for some $q \in k$ with $0<|q|<1$.

Theorem (Mumford)

Let X / k a smooth projective curve of genus g whose Jacobian has totally degenerate reduction. Then there exist $\Omega \subset \mathbf{P}_{k}^{1, \text { an }}$ open dense subset and $\Gamma \subset \mathrm{PGL}_{2}(k)$ free of rank g such that $\Omega / \Gamma \cong X^{\text {an }}$.

Tate and Mumford's theorems

Let k be a complete non-archimedean field [e.g. $\left.k=\mathbf{Q}_{p}, \mathbf{C}((t)), \mathbf{F}_{p}((t))\right]$.
Theorem (Tate)
Let E / k be an elliptic curve with split multiplicative reduction. Then $E^{a n} \cong k^{\times} / q^{\mathrm{Z}}$ for some $q \in k$ with $0<|q|<1$.

Theorem (Mumford)

Let X / k a smooth projective curve of genus g whose Jacobian has totally degenerate reduction. Then there exist $\Omega \subset \mathbf{P}_{k}^{1, \text { an }}$ open dense subset and $\Gamma \subset \mathrm{PGL}_{2}(k)$ free of rank g such that $\Omega / \Gamma \cong X^{\text {an }}$.

Aim

Build a "universal" theory of uniformization, that works for every valued field (archimedean and non-archimedean) at once.

Schottky groups

Let $(k,|\cdot|)$ be a complete valued field. Let Γ be a subgroup of $\mathrm{PGL}_{2}(k)$. It acts on $\mathbf{P}_{k}^{1, \text { an }}$.

Schottky groups

Let $(k,|\cdot|)$ be a complete valued field. Let Γ be a subgroup of $\operatorname{PGL}_{2}(k)$. It acts on $\mathbf{P}_{k}^{1, \text { an }}$.

A Schottky group over k is a subgroup $\Gamma \subset P G L_{2}(k)$ that satisfies:

- 「 is finitely generated- 「 is free
- non-trivial elements of Γ are hyperbolic
- the locus of $\mathbf{P}_{k}^{1, \text { an }}$ where Γ acts discontinuously is non-empty.

Fact

The complement \mathscr{L} of the discontinuity locus, called the limit set, is compact and contains only k-rational points.

Koebe coordinates

To $\gamma \in \mathrm{PGL}_{2}(k)$ hyperbolic, we associate

- $\alpha \in \mathbf{P}^{1}(k)$ its attracting fixed point;
- $\alpha^{\prime} \in \mathbf{P}^{1}(k)$ its repelling fixed point;
- $\beta \in k$ the quotient of its eigenvalues with absolute value <1.

For $\alpha, \alpha^{\prime}, \beta \in k$ with $|\beta| \in(0,1)$, we have

$$
\gamma=M\left(\alpha, \alpha^{\prime}, \beta\right)=\left[\begin{array}{cc}
\alpha-\beta \alpha^{\prime} & (\beta-1) \alpha \alpha^{\prime} \\
1-\beta & \beta \alpha-\alpha^{\prime}
\end{array}\right] .
$$

Schottky space

Let $g \geqslant 2$. The Schottky space \mathscr{S}_{g} is the subset of $\mathbf{A}_{\mathbf{Z}}^{3 g-3, \text { an }}$ consisting of the points

$$
z=\left(x_{3}, \ldots, x_{g}, x_{2}^{\prime}, \ldots, x_{g}^{\prime}, y_{1}, \ldots, y_{g}\right)
$$

such that the subgroup of $\operatorname{PGL}_{2}(\mathscr{H}(z))$ defined by

$$
\Gamma_{z}:=\left\langle M\left(0, \infty, y_{1}\right), M\left(1, x_{2}^{\prime}, y_{2}\right), M\left(x_{3}, x_{3}^{\prime}, y_{3}\right), \ldots, M\left(x_{g}, x_{g}^{\prime}, y_{g}\right)\right\rangle
$$

is a Schottky group.

Schottky space

Let $g \geqslant 2$. The Schottky space \mathscr{S}_{g} is the subset of $\mathbf{A}_{\mathbf{Z}}^{3 g-3, \text { an }}$ consisting of the points

$$
z=\left(x_{3}, \ldots, x_{g}, x_{2}^{\prime}, \ldots, x_{g}^{\prime}, y_{1}, \ldots, y_{g}\right)
$$

such that the subgroup of $\mathrm{PGL}_{2}(\mathscr{H}(z))$ defined by

$$
\Gamma_{z}:=\left\langle M\left(0, \infty, y_{1}\right), M\left(1, x_{2}^{\prime}, y_{2}\right), M\left(x_{3}, x_{3}^{\prime}, y_{3}\right), \ldots, M\left(x_{g}, x_{g}^{\prime}, y_{g}\right)\right\rangle
$$

is a Schottky group.

Proposition (Poineau - T.)

For every $(k,|\cdot|)$ and every Schottky group $\Gamma \subset \mathrm{PGL}_{2}(k)$ of rank g, there is a point $z \in \mathscr{S}_{g} \times \mathbf{z} k$ such that $\Gamma_{z}=h^{-1} \Gamma h, h \in \operatorname{PGL}_{2}(k)$.

Schottky space

Let $g \geqslant 2$. The Schottky space \mathscr{S}_{g} is the subset of $\mathbf{A}_{\mathbf{Z}}^{3 g-3, \text { an }}$ consisting of the points

$$
z=\left(x_{3}, \ldots, x_{g}, x_{2}^{\prime}, \ldots, x_{g}^{\prime}, y_{1}, \ldots, y_{g}\right)
$$

such that the subgroup of $\mathrm{PGL}_{2}(\mathscr{H}(z))$ defined by

$$
\Gamma_{z}:=\left\langle M\left(0, \infty, y_{1}\right), M\left(1, x_{2}^{\prime}, y_{2}\right), M\left(x_{3}, x_{3}^{\prime}, y_{3}\right), \ldots, M\left(x_{g}, x_{g}^{\prime}, y_{g}\right)\right\rangle
$$

is a Schottky group.

Proposition (Poineau - T.)

For every $(k,|\cdot|)$ and every Schottky group $\Gamma \subset \mathrm{PGL}_{2}(k)$ of rank g, there is a point $z \in \mathscr{S}_{g} \times \mathbf{z} k$ such that $\Gamma_{z}=h^{-1} \Gamma h, h \in \operatorname{PGL}_{2}(k)$.

Theorem (Poineau - T.)
The Schottky space \mathscr{S}_{g} is a connected open subset of $\mathbf{A}_{\mathrm{Z}}^{3 g-3, \mathrm{an}}$.

Universal Mumford curve

Denote by $\left(X_{3}, \ldots, X_{g}, X_{2}^{\prime}, \ldots, X_{g}^{\prime}, Y_{1}, \ldots, Y_{g}\right)$ the coordinates on $\mathbf{A}_{\mathbf{Z}}^{3 g-3, \text { an }}$ and consider the subgroup of $\operatorname{PGL}_{2}\left(\mathscr{O}\left(\mathscr{S}_{\mathrm{g}}\right)\right)$:

$$
\Gamma=\left\langle M\left(0, \infty, Y_{1}\right), M\left(1, X_{2}^{\prime}, Y_{2}\right), M\left(X_{3}, X_{3}^{\prime}, Y_{3}\right), \ldots, M\left(X_{g}, X_{g}^{\prime}, Y_{g}\right)\right\rangle
$$

Theorem (Poineau - T.)

There exists a closed subset \mathscr{L} of $\mathbf{P}_{\mathscr{S}_{g}}^{1, \text { an }}:=\mathscr{S}_{g} \times{ }_{\mathcal{M}(\mathbf{z})} \mathbf{P}_{\mathbf{Z}}^{1, \text { an }}$ and a relative curve $\mathscr{X}_{g} \rightarrow \mathscr{S}_{g}$ that is universally uniformized by Γ.

Theorem (Poineau - T.)
The group Out $\left(F_{g}\right)$ acts analytically and properly discontinuously on \mathscr{S}_{g} with finite stabilizers. The quotient $\mathrm{Mumf}_{g}:=\operatorname{Out}\left(F_{g}\right) \backslash \mathscr{S}_{g}$ is a (singular) analytic space over \mathbf{Z} whose non-archimedean locus parametrizes Mumford curves.

What's next?

- Singularities and homotopy type of Mumf_{g}, relationships with tropical moduli (Chan-Galatius-Payne) and outer space (Culler-Vogtmann)
- Hausdorff dimension and capacity of limit sets
- Steinness of \mathscr{S}_{g}
- Periods $\left(q_{i, j}\right)_{1 \leqslant i, j \leqslant g}$ of Mumford curves (Manin-Drinfeld) over \mathbf{Z}
- q-expansions of modular forms

Schottky problem (= characterizing Jacobians among Abelian varieties)

- Gauß-Manin connections Picard-Fuchs equations (Gerritzen):

$$
\text { for } 1 \leqslant i \leqslant g,\left\{\begin{array}{l}
\nabla\left(\frac{d u_{i}}{u_{i}}\right)=\sum_{j=1}^{g} \beta_{j} \otimes \frac{d q_{i, j}}{q_{i, j}} ; \\
\nabla\left(\beta_{i}\right)=0 .
\end{array}\right.
$$

What's next?

- Singularities and homotopy type of Mumf_{g}, relationships with tropical moduli (Chan-Galatius-Payne) and outer space (Culler-Vogtmann)
- Hausdorff dimension and capacity of limit sets
- Steinness of \mathscr{S}_{g}
- Periods $\left(q_{i, j}\right)_{1 \leqslant i, j \leqslant g}$ of Mumford curves (Manin-Drinfeld) over \mathbf{Z}
- q-expansions of modular forms

Schottky problem (= characterizing Jacobians among Abelian varieties)

- Gauß-Manin connections Picard-Fuchs equations (Gerritzen):

$$
\text { for } 1 \leqslant i \leqslant g,\left\{\begin{array}{l}
\nabla\left(\frac{d u_{i}}{u_{i}}\right)=\sum_{j=1}^{g} \beta_{j} \otimes \frac{d q_{i, j}}{q_{i, j}} ; \\
\nabla\left(\beta_{i}\right)=0 .
\end{array}\right.
$$

The space \mathscr{S}_{1}

Let $g=1$.
Schottky group over $k \rightarrow \Gamma \sim\left\langle\left(\begin{array}{ll}q & 0 \\ 0 & 1\end{array}\right)\right\rangle$, with $q \in k, 0<|q|<1$
Schottky space $\rightarrow \mathscr{S}_{1}=\mathbf{D}^{\circ}:=\left\{x \in \mathbf{A}_{\mathbf{Z}}^{1, \text { an }}: 0<|T(x)|<1\right\}$
Universal Tate curve $\rightarrow \mathscr{X}_{1}=\left(\mathbf{A}_{\mathscr{S}_{1}}^{1, \text { an }}-\{0, \infty\}\right) / T^{\mathbf{Z}}$
The sheaf $\Omega_{\mathscr{X}_{1} / \mathscr{I}_{1}}^{1}$ is globally generated by $\frac{d S}{S}$ where S is a parameter for $\mathbf{A}_{\mathscr{S}_{1}}^{1, \text { an }}$.

q-expansion of modular forms

Let $\omega:=\pi_{*} \Omega_{\mathscr{X}_{1} / \mathscr{S}_{1}}^{1}$ and $f \in H^{0}\left(\mathscr{S}_{1}, \omega^{\otimes k}\right)$.
Then $f=\phi \cdot\left(\frac{d S}{S}\right)^{k}$, with $\phi \in H^{0}\left(\mathscr{S}_{1}, \mathscr{O}\right)=\mathbf{Z} \llbracket T \rrbracket_{1-}\left[\frac{1}{T}\right]$.
One can use this to find Fourier expansions of classical modular forms, thanks to the diagram:

where \mathscr{E} is the universal generalized elliptic curve over the modular curve $X(N)$ (Deligne-Rapoport, Katz-Mazur).

Teichmüller modular forms $(g>1)$

M_{g} moduli space of smooth and proper curves of genus g
$\pi: C_{g} \rightarrow M_{g}$ universal curve over M_{g}
$\lambda:=\Lambda^{g} \pi_{*} \Omega_{C_{g} / M_{g}}^{1}$

Teichmüller modular forms $(g>1)$

M_{g} moduli space of smooth and proper curves of genus g
$\pi: C_{g} \rightarrow M_{g}$ universal curve over M_{g}
$\lambda:=\Lambda^{g} \pi_{*} \Omega_{C_{g} / M_{g}}^{1}$

Definition

A Teichmüller modular form of genus g and weight k over a ring R is an element of

$$
T_{g, k}(R):=H^{0}\left(M_{g} \otimes R, \lambda^{\otimes k}\right) .
$$

Teichmüller modular forms $(g>1)$

M_{g} moduli space of smooth and proper curves of genus g
$\pi: C_{g} \rightarrow M_{g}$ universal curve over M_{g}
$\lambda:=\Lambda^{g} \pi_{*} \Omega_{C_{g} / M_{g}}^{1}$

Definition

A Teichmüller modular form of genus g and weight k over a ring R is an element of

$$
T_{g, k}(R):=H^{0}\left(M_{g} \otimes R, \lambda^{\otimes k}\right) .
$$

The Torelli map τ gives rise to

$$
\tau^{*}: S_{g, k}(R) \rightarrow T_{g, k}(R)
$$

where $S_{g, k}(R)$ denotes the ring of Siegel modular forms over R.

Expansions

T. Ichikawa (1994) defined an expansion map

$$
\kappa_{R}: T_{g, k}(R) \rightarrow R\left[x_{ \pm 1}, \ldots, x_{ \pm g}, \frac{1}{x_{i}-x_{j}}\right] \llbracket y_{1}, \ldots, y_{g} \rrbracket .
$$

Expansions

T. Ichikawa (1994) defined an expansion map

$$
\kappa_{R}: T_{g, k}(R) \rightarrow R\left[x_{ \pm 1}, \ldots, x_{ \pm g}, \frac{1}{x_{i}-x_{j}}\right] \llbracket y_{1}, \ldots, y_{g} \rrbracket .
$$

- This could be upgraded to

$$
\kappa_{R}: T_{g, k}(R) \rightarrow R \hat{\otimes} \mathcal{O}\left(\mathcal{S}_{g}\right)
$$

providing additional convergence conditions

Expansions

T. Ichikawa (1994) defined an expansion map

$$
\kappa_{R}: T_{g, k}(R) \rightarrow R\left[x_{ \pm 1}, \ldots, x_{ \pm g}, \frac{1}{x_{i}-x_{j}}\right] \llbracket y_{1}, \ldots, y_{g} \rrbracket .
$$

- This could be upgraded to

$$
\kappa_{R}: T_{g, k}(R) \rightarrow R \hat{\otimes} \mathcal{O}\left(\mathcal{S}_{g}\right)
$$

providing additional convergence conditions

- related to the Fourier expansions of Siegel modular forms (using Yu. Manin - V. Drinfeld "Periods of p-adic Schottky groups", 1972)

Expansions

T. Ichikawa (1994) defined an expansion map

$$
\kappa_{R}: T_{g, k}(R) \rightarrow R\left[x_{ \pm 1}, \ldots, x_{ \pm g}, \frac{1}{x_{i}-x_{j}}\right] \llbracket y_{1}, \ldots, y_{g} \rrbracket .
$$

- This could be upgraded to

$$
\kappa_{R}: T_{g, k}(R) \rightarrow R \hat{\otimes} \mathcal{O}\left(\mathcal{S}_{g}\right)
$$

providing additional convergence conditions

- related to the Fourier expansions of Siegel modular forms (using Yu. Manin - V. Drinfeld "Periods of p-adic Schottky groups", 1972)
- may be helpful for the Schottky problem (characterizing Jacobian varieties among Abelian varieties)

The End (for now)

Thank you for your attention!

Genus 3

$\chi_{18} \in S_{3,18}(\mathbf{Z})$ product of Thetanullwerte with even characteristics

Genus 3

$\chi_{18} \in S_{3,18}(\mathbf{Z})$ product of Thetanullwerte with even characteristics
Theorem (S. Tsuyumine, $1991+$ T. Ichikawa, 2000)
There exists $\mu_{9} \in T_{3,9}(\mathbf{Z})$ such that

$$
\tau^{*}\left(\chi_{18}\right)=\mu_{9}^{2} .
$$

Genus 3

$\chi_{18} \in S_{3,18}(\mathbf{Z})$ product of Thetanullwerte with even characteristics
Theorem (S. Tsuyumine, $1991+$ T. Ichikawa, 2000)
There exists $\mu_{9} \in T_{3,9}(\mathbf{Z})$ such that

$$
\tau^{*}\left(\chi_{18}\right)=\mu_{9}^{2} .
$$

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010)
Let $k \subset \mathbf{C}$. Let A / k be a principally polarized indecomposable Abelian threefold that is isomorphic to a Jacobian over \mathbf{C}.

Genus 3

$\chi_{18} \in S_{3,18}(\mathbf{Z})$ product of Thetanullwerte with even characteristics
Theorem (S. Tsuyumine, $1991+$ T. Ichikawa, 2000)
There exists $\mu_{9} \in T_{3,9}(\mathbf{Z})$ such that

$$
\tau^{*}\left(\chi_{18}\right)=\mu_{9}^{2} .
$$

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010)
Let $k \subset \mathbf{C}$. Let A / k be a principally polarized indecomposable Abelian threefold that is isomorphic to a Jacobian over C.
Then, A is isomorphic to a Jacobian over k if, and only if,

$$
\chi_{18}(A) \in k^{2}
$$

What's next?

- Singularities and homotopy type of $M u m f_{g}$, relationships with tropical moduli (Chan-Galatius-Payne) and outer space (Culler-Vogtmann)
- Hausdorff dimension and capacity of limit sets
- Steinness of \mathscr{S}_{g}
- Periods $\left(q_{i, j}\right)_{1 \leqslant i, j \leqslant g}$ and universal Jacobians (Manin-Drinfeld, Myers)
- q-expansions of modular forms Schottky problem (= characterize the Torelli locus inside \mathscr{A}_{g})
- Gauß-Manin connections Picard-Fuchs equations (Gerritzen):

$$
\text { for } 1 \leqslant i \leqslant g,\left\{\begin{array}{l}
\nabla\left(\frac{d u_{i}}{u_{i}}\right)=\sum_{j=1}^{g} \beta_{j} \otimes \frac{d q_{i, j}}{q_{i, j}} ; \\
\nabla\left(\beta_{i}\right)=0 .
\end{array}\right.
$$

What's next?

- Singularities and homotopy type of Mumf_{g}, relationships with tropical moduli (Chan-Galatius-Payne) and outer space (Culler-Vogtmann)
- Hausdorff dimension and capacity of limit sets
- Steinness of \mathscr{S}_{g}
- Periods $\left(q_{i, j}\right)_{1 \leqslant i, j \leqslant g}$ and universal Jacobians (Manin-Drinfeld, Myers)
- q-expansions of modular forms Schottky problem (= characterize the Torelli locus inside \mathscr{A}_{g})
- Gauß-Manin connections Picard-Fuchs equations (Gerritzen):

$$
\text { for } 1 \leqslant i \leqslant g,\left\{\begin{array}{l}
\nabla\left(\frac{d u_{i}}{u_{i}}\right)=\sum_{j=1}^{g} \beta_{j} \otimes \frac{d q_{i, j}}{q_{i, j}} ; \\
\nabla\left(\beta_{i}\right)=0 .
\end{array}\right.
$$

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}.

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}. The action factors through $\operatorname{Out}\left(F_{g}\right)$.

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}. The action factors through $\operatorname{Out}\left(F_{g}\right)$.

Lemma

For each $z \in \mathcal{S}_{g}$, we have

$$
\operatorname{Stab}(z) \simeq \Gamma_{z} \backslash N\left(\Gamma_{z}\right) \hookrightarrow \operatorname{Aut}\left(C_{z}\right)
$$

(with equality in the non-Archimedean case).

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}. The action factors through $\operatorname{Out}\left(F_{g}\right)$.

Lemma

For each $z \in \mathcal{S}_{g}$, we have

$$
\operatorname{Stab}(z) \simeq \Gamma_{z} \backslash N\left(\Gamma_{z}\right) \hookrightarrow \operatorname{Aut}\left(C_{z}\right)
$$

(with equality in the non-Archimedean case).

Theorem (Poineau - T., in progress)
The action of $\operatorname{Out}\left(F_{g}\right)$ on \mathcal{S}_{g} is analytic and properly discontinuous.

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}. The action factors through $\operatorname{Out}\left(F_{g}\right)$.

Lemma

For each $z \in \mathcal{S}_{g}$, we have

$$
\operatorname{Stab}(z) \simeq \Gamma_{z} \backslash N\left(\Gamma_{z}\right) \hookrightarrow \operatorname{Aut}\left(C_{z}\right)
$$

(with equality in the non-Archimedean case).

Theorem (Poineau - T., in progress)
The action of $\operatorname{Out}\left(F_{g}\right)$ on \mathcal{S}_{g} is analytic and properly discontinuous.
The quotient $\operatorname{Out}\left(F_{g}\right) \backslash \mathcal{S}_{g}$

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}. The action factors through $\operatorname{Out}\left(F_{g}\right)$.

Lemma

For each $z \in \mathcal{S}_{g}$, we have

$$
\operatorname{Stab}(z) \simeq \Gamma_{z} \backslash N\left(\Gamma_{z}\right) \hookrightarrow \operatorname{Aut}\left(C_{z}\right)
$$

(with equality in the non-Archimedean case).

Theorem (Poineau - T., in progress)
The action of $\operatorname{Out}\left(F_{g}\right)$ on \mathcal{S}_{g} is analytic and properly discontinuous.
The quotient $\operatorname{Out}\left(F_{g}\right) \backslash \mathcal{S}_{g}$

- is the space of Mumford curves (inside M_{g}) on the non-Archimedean part;

Action of $\operatorname{Out}\left(F_{g}\right)$

Let $\sigma \in \operatorname{Aut}\left(F_{g}\right)$ act on the generators of Γ_{z} as on those of F_{g}. The action factors through $\operatorname{Out}\left(F_{g}\right)$.

Lemma

For each $z \in \mathcal{S}_{g}$, we have

$$
\operatorname{Stab}(z) \simeq \Gamma_{z} \backslash N\left(\Gamma_{z}\right) \hookrightarrow \operatorname{Aut}\left(C_{z}\right)
$$

(with equality in the non-Archimedean case).

Theorem (Poineau - T., in progress)
The action of $\operatorname{Out}\left(F_{g}\right)$ on \mathcal{S}_{g} is analytic and properly discontinuous.
The quotient $\operatorname{Out}\left(F_{g}\right) \backslash \mathcal{S}_{g}$

- is the space of Mumford curves (inside M_{g}) on the non-Archimedean part;
- surjects onto M_{g} on the Archimedean part.

Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)
The Outer Space CV_{g} is a space of metric graphs X of genus g endowed with a marking (isomorphism $F_{g} \xrightarrow{\sim} \pi_{1}(X)$).

Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)
The Outer Space CV_{g} is a space of metric graphs X of genus g endowed with a marking (isomorphism $F_{g} \xrightarrow{\sim} \pi_{1}(X)$).

Applications:

- $C V_{g}$ is contractible
- $\operatorname{vcd}\left(F_{g}\right)=2 g-3$

Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)
The Outer Space CV_{g} is a space of metric graphs X of genus g endowed with a marking (isomorphism $F_{g} \xrightarrow{\sim} \pi_{1}(X)$).

Applications:

- $C V_{g}$ is contractible
- $\operatorname{vcd}\left(F_{g}\right)=2 g-3$

Let $(k,|\cdot|)$ be a complete non-Archimedean valued field. Each Mumford curve of genus g over k retracts onto a canonical "skeleton" that is a metric graph of genus g.

Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)
The Outer Space CV_{g} is a space of metric graphs X of genus g endowed with a marking (isomorphism $F_{g} \xrightarrow{\sim} \pi_{1}(X)$).

Applications:

- $C V_{g}$ is contractible
- $\operatorname{vcd}\left(F_{g}\right)=2 g-3$

Let $(k,|\cdot|)$ be a complete non-Archimedean valued field. Each Mumford curve of genus g over k retracts onto a canonical "skeleton" that is a metric graph of genus g.
We have a continuous surjective map

$$
\mathcal{S}_{g, k} \rightarrow C V_{g} \times_{M_{g}^{\text {trop }}} \operatorname{Mumf}_{g, k} .
$$

See also M. Ulirsch "Non-Archimedean Schottky Space and its Tropicalization", 2020

