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Uniformization of complex elliptic curves

Let
E (C) = {[x : y : z ] ∈ P2

C : zy2 = x3 + az2x + bz3}
for some a, b ∈ C with 4a3 + 27b2 6= 0.

Uniformization of E

E (C) is a group, isomorphic to C/Λ, where Λ = ω1Z⊕ ω2Z is a lattice:



Schottky uniformization over C

This isomorphism is of an analytic nature:

C/Λ→ E (C)

w 7→
{

[℘(w) : ℘′(w) : 1] if w 6= 0

[0 : 1 : 0] if w = 0

where ℘ is the meromorphic Weierstrass ℘-function.

E (C) ' C/(Z + Zτ)
exp(2πi·)−−−−−→
∼

C∗/qZ

with Im(τ) > 0 and q = exp(2πiτ).

Theorem (Koebe Rückkehrschnitt theorem)

Let X an be a compact Riemann surface of genus g . There exist Ω ⊂ C
open dense and Γ ⊂ PGL2(C) free of rank g , such that Ω/Γ ∼= X an.

What if we replace C with a non-archimedean field (k, | · |)?
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Arithmetic analytic geometry

1960’s John Tate introduces rigid analytic geometry and non-archimedean
uniformization of elliptic curves

1970’s Michel Raynaud links rigid spaces and formal geometry

∼1990 Vladimir Berkovich conceives a new theory using spaces of valuations and
spectral theory

1990’s Roland Huber’s adic spaces generalize Berkovich’s theory

∼2010 Jérôme Poineau develops the theory of Berkovich spaces over Z

What for?

Arithmetic geometry: local Langlands program (étale cohomology on
Berkovich spaces) and p-adic Hodge theory (Scholze’s perfectoid spaces)

Classical and combinatorial algebraic geometry (via connections to toric
and tropical geometries)

String theory (degeneration of Calabi-Yau, mirror symmetry, SYZ fibration)

Dynamical systems and potential theory (dynamics on Berkovich spaces)

p-adic differential equations (radii of convergence on Berkovich curves)

Diophantine problems (via Arakelov geometry and tropical curves)

Inverse Galois problem

. . .
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The Berkovich analytic space An,an
A

Let (A, ‖·‖) be a commutative Banach ring with unit. Let n ∈ N.

The analytic space An,an
A is

the set of multiplicative semi-norms | · | : A[T1, . . . ,Tn]→ R+

bounded on A,

endowed with the coarsest topology such that that the evaluations

evf : An,an
A −→ R+

| · | 7−→ |f |

are continuous for every f ∈ A[T1 . . . ,Tn],

and with a structure sheaf of rings: U → O(U).
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The Berkovich analytic space An,an
A

Theorem (Berkovich)

The space An,an
A is Hausdorff, locally compact, and locally

path-connected.

To each x ∈ An,an
A , we associate a complete residue field

H (x) := completion of the fraction field of A[T1, . . . ,Tn]/Ker(| · |x)

and the resulting evaluation map

χx : A[T1, . . . ,Tn]→H (x).
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A0,an
Z

O = Z
[
1
6

]

O = Q2

5

O = R

O = Z3

|.|εp

3

|.|ε∞

p2

|.|0
H = (Qp, |.|εp)

H = (R, |.|ε∞)

H = (Q, |.|0)

H = (Fp, |.|0)



Berkovich curves over Qp

ηGauss

η2,|p|

η2,|p2|

2

2 + 2p

2 + p

2 + p2

η0,|p|

ηp,|p3|
p+ p3

p

0
2p

η

(type(4))

1

1 + p

p− 1

P1,an
Qp

y2 = x(x − 1)(x − p)



The analytic line P1,an
Z

There is a canonical morphism pr : P1,an
Z → A0,an

Z and

∀x ∈ A0,an
Z , pr−1(x) ' P1,an

H (x).

Let D be the open unit disk in P1,an
Z . Then H0(D,O) is a ring of

convergent arithmetic power series (D. Harbater):

H0(D,O) = Z[[T ]]1−

= {f ∈ Z[[T ]] with complex radius of convergence > 1}.
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Tate and Mumford’s theorems

Let k be a complete non-archimedean field [e.g. k = Qp,C((t)),Fp((t))].

Theorem (Tate)

Let E/k be an elliptic curve with split multiplicative reduction. Then
E an ∼= k×/qZ for some q ∈ k with 0 < |q| < 1.

Theorem (Mumford)

Let X/k a smooth projective curve of genus g whose Jacobian has
totally degenerate reduction. Then there exist Ω ⊂ P1,an

k open dense
subset and Γ ⊂ PGL2(k) free of rank g such that Ω/Γ ∼= X an.

Aim

Build a “universal” theory of uniformization, that works for every valued
field (archimedean and non-archimedean) at once.
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Schottky groups

Let (k, | · |) be a complete valued field. Let Γ be a subgroup of PGL2(k).
It acts on P1,an

k .

A Schottky group over k is a subgroup Γ ⊂ PGL2(k) that satisfies:

Γ is finitely generated

Γ is free

non-trivial elements of Γ are hyperbolic

the locus of P1,an
k where Γ acts discontinuously is non-empty.

Fact

The complement L of the discontinuity locus, called the limit set, is
compact and contains only k-rational points.
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Koebe coordinates

To γ ∈ PGL2(k) hyperbolic, we associate

α ∈ P1(k) its attracting fixed point;

α′ ∈ P1(k) its repelling fixed point;

β ∈ k the quotient of its eigenvalues with absolute value < 1.

For α, α′, β ∈ k with |β| ∈ (0, 1), we have

γ = M(α, α′, β) =

[
α− βα′ (β − 1)αα′

1− β βα− α′
]
.



Schottky space

Let g > 2. The Schottky space Sg is the subset of A3g−3,an
Z consisting

of the points
z = (x3, . . . , xg , x

′
2, . . . , x

′
g , y1, . . . , yg )

such that the subgroup of PGL2(H (z)) defined by

Γz := 〈M(0,∞, y1),M(1, x ′2, y2),M(x3, x
′
3, y3), . . . ,M(xg , x

′
g , yg )〉

is a Schottky group.

Proposition (Poineau - T.)

For every (k, | · |) and every Schottky group Γ ⊂ PGL2(k) of rank g ,
there is a point z ∈ Sg ×Z k such that Γz = h−1Γh, h ∈ PGL2(k).

Theorem (Poineau - T.)

The Schottky space Sg is a connected open subset of A3g−3,an
Z .
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Universal Mumford curve

Denote by (X3, . . . ,Xg ,X
′
2, . . . ,X

′
g ,Y1, . . . ,Yg ) the coordinates

on A3g−3,an
Z and consider the subgroup of PGL2(O(Sg )):

Γ = 〈M(0,∞,Y1),M(1,X ′2,Y2),M(X3,X
′
3,Y3), . . . ,M(Xg ,X

′
g ,Yg )〉.

Theorem (Poineau - T.)

There exists a closed subset L of P1,an
Sg

:= Sg ×M(Z) P
1,an
Z and a

relative curve Xg → Sg that is universally uniformized by Γ.

Theorem (Poineau - T.)

The group Out(Fg ) acts analytically and properly discontinuously on Sg

with finite stabilizers. The quotient Mumfg := Out(Fg )\Sg is a
(singular) analytic space over Z whose non-archimedean locus
parametrizes Mumford curves.



What’s next?

Singularities and homotopy type of Mumfg , relationships with
tropical moduli (Chan-Galatius-Payne) and outer space
(Culler-Vogtmann)

Hausdorff dimension and capacity of limit sets

Steinness of Sg

Periods (qi,j)16i,j6g of Mumford curves (Manin-Drinfeld) over Z

q-expansions of modular forms
Schottky problem (= characterizing Jacobians among Abelian
varieties)

Gauß-Manin connections
Picard-Fuchs equations (Gerritzen):

for 1 6 i 6 g ,




∇
(
dui
ui

)
=

g∑

j=1

βj ⊗
dqi,j
qi,j

;

∇(βi ) = 0.
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The space S1

Let g = 1.

Schottky group over k → Γ ∼
〈(q 0

0 1

)〉
, with q ∈ k , 0 < |q| < 1

Schottky space → S1 = D◦ := {x ∈ A1,an
Z : 0 < |T (x)| < 1}

Universal Tate curve →X1 = (A1,an
S1
− {0,∞})/TZ

The sheaf Ω1
X1/S1

is globally generated by dS
S where S is a parameter for

A1,an
S1

.



q-expansion of modular forms

Let ω := π∗Ω
1
X1/S1

and f ∈ H0(S1, ω
⊗k).

Then f = φ · ( dS
S )k , with φ ∈ H0(S1,O) = Z[[T ]]1− [ 1

T ].

One can use this to find Fourier expansions of classical modular forms,
thanks to the diagram:

X1

��

// E an

��
S1

// X (N)

where E is the universal generalized elliptic curve over the modular curve
X (N) (Deligne-Rapoport, Katz-Mazur).



Teichmüller modular forms (g > 1)

Mg moduli space of smooth and proper curves of genus g

π : Cg → Mg universal curve over Mg

λ :=
∧g

π∗Ω
1
Cg/Mg

Definition

A Teichmüller modular form of genus g and weight k over a ring R is an
element of

Tg ,k(R) := H0(Mg ⊗ R, λ⊗k).

The Torelli map τ gives rise to

τ∗ : Sg ,k(R)→ Tg ,k(R),

where Sg ,k(R) denotes the ring of Siegel modular forms over R.
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Expansions

T. Ichikawa (1994) defined an expansion map

κR : Tg ,k(R)→ R
[
x±1, . . . , x±g ,

1

xi − xj

]
[[y1, . . . , yg ]].

This could be upgraded to

κR : Tg ,k(R)→ R ⊗̂O(Sg )

providing additional convergence conditions

related to the Fourier expansions of Siegel modular forms
(using Yu. Manin - V. Drinfeld “Periods of p-adic Schottky groups”,
1972)

may be helpful for the Schottky problem
(characterizing Jacobian varieties among Abelian varieties)
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The End (for now)

Thank you for your attention!



Genus 3

χ18 ∈ S3,18(Z) product of Thetanullwerte with even characteristics

Theorem (S. Tsuyumine, 1991 + T. Ichikawa, 2000)

There exists µ9 ∈ T3,9(Z) such that

τ∗(χ18) = µ2
9.

Theorem (G. Lachaud - C. Ritzenthaler - A. Zykin, 2010)

Let k ⊂ C. Let A/k be a principally polarized indecomposable Abelian
threefold that is isomorphic to a Jacobian over C.
Then, A is isomorphic to a Jacobian over k if, and only if,

χ18(A) ∈ k2.
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What’s next?

Singularities and homotopy type of Mumfg , relationships with
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Hausdorff dimension and capacity of limit sets
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Gauß-Manin connections
Picard-Fuchs equations (Gerritzen):

for 1 6 i 6 g ,




∇
(
dui
ui

)
=

g∑

j=1

βj ⊗
dqi,j
qi,j

;

∇(βi ) = 0.



What’s next?

Singularities and homotopy type of Mumfg , relationships with
tropical moduli (Chan-Galatius-Payne) and outer space
(Culler-Vogtmann)

Hausdorff dimension and capacity of limit sets

Steinness of Sg

Periods (qi,j)16i,j6g and universal Jacobians (Manin-Drinfeld,
Myers)

q-expansions of modular forms
Schottky problem (= characterize the Torelli locus inside Ag )

Gauß-Manin connections
Picard-Fuchs equations (Gerritzen):

for 1 6 i 6 g ,




∇
(
dui
ui

)
=

g∑

j=1

βj ⊗
dqi,j
qi,j

;

∇(βi ) = 0.



Action of Out(Fg)

Let σ ∈ Aut(Fg ) act on the generators of Γz as on those of Fg .

The action factors through Out(Fg ).

Lemma

For each z ∈ Sg , we have

Stab(z) ' Γz\N(Γz) ↪→ Aut(Cz)

(with equality in the non-Archimedean case).

Theorem (Poineau - T. , in progress)

The action of Out(Fg ) on Sg is analytic and properly discontinuous.

The quotient Out(Fg )\Sg
is the space of Mumford curves (inside Mg ) on the non-Archimedean
part;

surjects onto Mg on the Archimedean part.
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Relationship with the Outer Space

Definition (M. Culler - K. Vogtmann, 1986)

The Outer Space CVg is a space of metric graphs X of genus g endowed

with a marking (isomorphism Fg
∼−→ π1(X )).

Applications:

CVg is contractible

vcd(Fg ) = 2g − 3

Let (k, | · |) be a complete non-Archimedean valued field. Each Mumford
curve of genus g over k retracts onto a canonical “skeleton” that is a
metric graph of genus g .
We have a continuous surjective map

Sg ,k → CVg ×Mtrop
g

Mumfg ,k .

See also M. Ulirsch “Non-Archimedean Schottky Space and its
Tropicalization”, 2020
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