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Motivation

Classical algebraic geometry
Studies geometric objects locally defined by polynomials.

Spectacular advances and applications (robotics, biology, computer science,
. . . : polynomials are everywhere!)

, but also open problems that resist to a
purely ‘classical’ approach:

How many irreducible curves of degree d and genus g pass through a
given finite set of points in Pn(C)?
Do the cohomology groups H4g−6(Mg (C),Q) vanish for almost all g ’s?

Is a general quartic fivefold X ↪→ P6(C) rational or irrational?
Can we find explicit uniform bounds for the number of points of a curve of
genus g > 1 over a number field?
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The tropical/analytic approach

Analytic geometry
Studies geometric objects locally defined by converging power series. Well
known and extremely useful over C (and R) [Riemann, DeRham, Hodge,
Kähler, . . . ].

Tropical geometry
Studies polyhedral objects and piecewise linear functions satisfying extra
combinatorial conditions (balancing formulas, rationality, . . . ).

Tropicalization and analytification

To an algebraic variety X , one can associate a tropicalization X trop and an
analytification X an fitting in a commutative diagram:

X

trop

||
an

!!
X trop X anTropoo
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Non-archimedean fields

A valued field (K , || · ||) is a field together with a function

|| · || : K → R≥0

satisfying

||x || = 0 iff x = 0

||xy || = ||x || · ||y ||
||x + y || ≤ ||x ||+ ||y ||.

Examples

(C(t), | · |t) –> good for studying families of complex varieties

(Q, | · |p) –> good for arithmetic geometry

(k, | · |0) –> good for dynamics, birational geometry, and to study
singularities
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Non-archimedean analytification and tropicalization: a metaphor

“Berkovich analytic
spaces are heavenly
abstract objects which
can be viewed by
earthly beings through
their tropical shadows.”
From M. Brandt’s thesis
(supervised by B. Sturmfels)
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Example (elliptic curves)

Let C be defined by: 2y2 + x + xy − y − πxy2 − πx2y + πx2 − x3 = 0.

C(R) C trop
Q(π) Can

Q((π))
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A brief history of non-archimedean geometry

1960’s Tate introduces rigid analytic geometry

1970’s Raynaud links rigid spaces and formal algebraic geometry

∼1990 Berkovich conceives a new theory using spaces of valuations and spectral
theory

1990’s Huber’s adic spaces generalize Berkovich’s theory

∼2010 Poineau develops the theory of Berkovich spaces over Z

Applications to

Arithmetic geometry: local Langlands program (étale cohomology on
Berkovich spaces) and p-adic Hodge theory (Scholze’s perfectoid spaces)

Combinatorial algebraic geometry (via connections to toric and tropical
geometries)

String theory (degeneration of Calabi–Yau, mirror symmetry, SYZ fibration)

Dynamical systems and potential theory (dynamics on Berkovich spaces)

p-adic differential equations (radii of convergence on Berkovich curves)

Inverse Galois problem
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A brief history of tropical geometry

1984 Bieri, Groves, and Strebel associate polyhedral structures to ideals of
Z[x±1

1 , . . . , x±1
n ]

1998 the adjective “tropical” is found for the first time in the literature (cf.
Tropical semirings by Jean-Eric Pin)

2005 Mikhalkin establishes that Gromov-Witten invariants of P2(C) are
controlled by their tropical counterparts

2007 Tevelev defines tropical compactifications for subvarieties of the torus
(later generalized to subvarieties of toric varieties)

2010’s Tropicalization techniques are applied fruitfully to moduli spaces

2018 Tropical proof of Rota’s log-concavity conjecture (Adiprasito–Huh–Katz)

Tropical approach applies also to

Geometric group theory (Bieri–Groves)

Biology (e.g phylogenetic trees)

Algebraic statistics

Economics

Training neural networks
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The “Berkovich + tropical” approach

1990’s Berkovich shows that a “nice” Berkovich space retracts continuously on a
finite polyhedral complex (its skeleton)

2009 Payne shows that “Berkovich analytification is the limit of all
tropicalizations”

2013 Tropical perspective on skeletons of Berkovich curves
(Baker–Payne–Rabinoff)

2016 Definition of essential skeletons for varieties over C((t)) (Nicaise–Xu)
2017 Gubler–Rabinoff–Werner generalize BPR in higher dimensions

Applications to

Tropical obstruction to specialization of (stable) rationality (Nicaise–Ottem)

Ramification of covers of curves (Temkin, Amini–Baker–Brugallé–Rabinoff)

Bogomolov conjecture for totally degenerate abelian varieties (Gubler)

Brill–Noether theory (via divisors on tropical curves)

Cohomology ofMg,n (Chan–Galatius–Payne)

Uniform bounds for the number of points of curves over number fields
(Katz–Rabinoff–Zureick-Brown)
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Plan of lectures

1 Introduction and motivation [you are here]
2 Berkovich spectra and analytification
3 Models of Berkovich spaces (or: how to study degenerations using

Berkovich spaces and viceversa)
4 Curves I
5 Curves II
6 Higher dimensional varieties (or: why can’t everything be as nice as in

dimension 1)
7 Tropical geometry and tropicalization
8 Tropicalization and analytification
9 Berkovich + tropical moduli I (Man

0,n and Mtrop
0,n ?)

10 Berkovich + tropical moduli II (Man
g,n and Mtrop

g,n ?)
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