Berkovich analytification and tropicalization of algebraic varieties

Daniele Turchetti

University of Warwick

ETH – 20th September 2022

Studies geometric objects locally defined by polynomials.

Spectacular advances and applications (robotics, biology, computer science, ...: polynomials are everywhere!)

Studies geometric objects locally defined by polynomials.

Studies geometric objects locally defined by polynomials.

Spectacular advances and applications (robotics, biology, computer science, ...: polynomials are everywhere!), but also open problems that resist to a purely 'classical' approach:

How many irreducible curves of degree d and genus g pass through a given finite set of points in Pⁿ(C)?

Studies geometric objects locally defined by polynomials.

- How many irreducible curves of degree d and genus g pass through a given finite set of points in Pⁿ(C)?
- Do the cohomology groups $H^{4g-6}(M_g(\mathbb{C}),\mathbb{Q})$ vanish for almost all g's?

Studies geometric objects locally defined by polynomials.

- How many irreducible curves of degree d and genus g pass through a given finite set of points in Pⁿ(C)?
- Do the cohomology groups $H^{4g-6}(M_g(\mathbb{C}),\mathbb{Q})$ vanish for almost all g's?
- Is a general quartic fivefold $X \hookrightarrow \mathbb{P}^6(\mathbb{C})$ rational or irrational?

Studies geometric objects locally defined by polynomials.

- How many irreducible curves of degree d and genus g pass through a given finite set of points in Pⁿ(C)?
- Do the cohomology groups $H^{4g-6}(M_g(\mathbb{C}),\mathbb{Q})$ vanish for almost all g's?
- Is a general quartic fivefold $X \hookrightarrow \mathbb{P}^6(\mathbb{C})$ rational or irrational?
- Can we find explicit uniform bounds for the number of points of a curve of genus g > 1 over a number field?

Analytic geometry

Studies geometric objects locally defined by converging power series. Well known and extremely useful over \mathbb{C} (and \mathbb{R}) [Riemann, DeRham, Hodge, Kähler, ...].

Analytic geometry

Studies geometric objects *locally defined by converging power series*. Well known and extremely useful over \mathbb{C} (and \mathbb{R}) [Riemann, DeRham, Hodge, Kähler, ...].

Tropical geometry

Studies polyhedral objects and piecewise linear functions satisfying extra combinatorial conditions (balancing formulas, rationality, \dots).

Analytic geometry

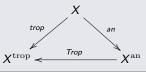
Studies geometric objects *locally defined by converging power series*. Well known and extremely useful over \mathbb{C} (and \mathbb{R}) [Riemann, DeRham, Hodge, Kähler, ...].

Tropical geometry

Studies polyhedral objects and piecewise linear functions satisfying extra combinatorial conditions (balancing formulas, rationality, \dots).

Tropicalization and analytification

To an algebraic variety X, one can associate a tropicalization X^{trop} and an analytification X^{an} fitting in a commutative diagram:



A valued field $(K, || \cdot ||)$ is a field together with a function

$$||\cdot||: K \to \mathbb{R}_{\geq 0}$$

satisfying

- ||x|| = 0 iff x = 0
- $||xy|| = ||x|| \cdot ||y||$
- $||x + y|| \le ||x|| + ||y||.$

```
||\cdot||: K \to \mathbb{R}_{\geq 0}
```

satisfying

- ||x|| = 0 iff x = 0
- $||xy|| = ||x|| \cdot ||y||$
- $||x + y|| \le \max(||x||, ||y||).$

 $||\cdot||: K \to \mathbb{R}_{\geq 0}$

satisfying

- ||x|| = 0 iff x = 0
- $||xy|| = ||x|| \cdot ||y||$
- $||x + y|| \le \max(||x||, ||y||).$

Examples

• $(\mathbb{C}(t), |\cdot|_t) \rightarrow$ good for studying families of complex varieties

 $||\cdot||: K \to \mathbb{R}_{\geq 0}$

satisfying

- ||x|| = 0 iff x = 0
- $||xy|| = ||x|| \cdot ||y||$
- $||x + y|| \le \max(||x||, ||y||).$

Examples

- $(\mathbb{C}(t), |\cdot|_t) \rightarrow$ good for studying families of complex varieties
- $(\mathbb{Q}, |\cdot|_p) \rightarrow$ good for arithmetic geometry

 $||\cdot||: K \to \mathbb{R}_{\geq 0}$

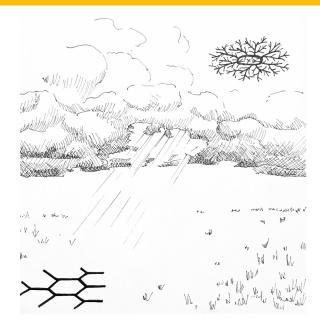
satisfying

- ||x|| = 0 iff x = 0
- $||xy|| = ||x|| \cdot ||y||$
- $||x + y|| \le \max(||x||, ||y||).$

Examples

- $(\mathbb{C}(t), |\cdot|_t) \rightarrow$ good for studying families of complex varieties
- $(\mathbb{Q}, |\cdot|_{\rho})$ -> good for arithmetic geometry
- $(k, |\cdot|_0) \rightarrow$ good for dynamics, birational geometry, and to study singularities

Non-archimedean analytification and tropicalization: a metaphor

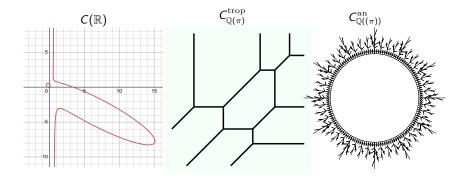


"Berkovich analytic spaces are heavenly abstract objects which can be viewed by earthly beings through their tropical shadows."

From M. Brandt's thesis (supervised by B. Sturmfels)

Example (elliptic curves)

Let C be defined by: $2y^2 + x + xy - y - \pi xy^2 - \pi x^2y + \pi x^2 - x^3 = 0.$



A brief history of non-archimedean geometry

- 1960's Tate introduces rigid analytic geometry
- 1970's Raynaud links rigid spaces and formal algebraic geometry
- ${\sim}1990\,$ Berkovich conceives a new theory using spaces of valuations and spectral theory
- 1990's Huber's adic spaces generalize Berkovich's theory
- ${\sim}2010\,$ Poineau develops the theory of Berkovich spaces over $\mathbb Z$

A brief history of non-archimedean geometry

- 1960's Tate introduces rigid analytic geometry
- 1970's Raynaud links rigid spaces and formal algebraic geometry
- ${\sim}1990\,$ Berkovich conceives a new theory using spaces of valuations and spectral theory
- 1990's Huber's adic spaces generalize Berkovich's theory
- ${\sim}2010\,$ Poineau develops the theory of Berkovich spaces over $\mathbb Z$

Applications to

- Arithmetic geometry: local Langlands program (étale cohomology on Berkovich spaces) and *p*-adic Hodge theory (Scholze's perfectoid spaces)
- Combinatorial algebraic geometry (via connections to toric and tropical geometries)
- String theory (degeneration of Calabi-Yau, mirror symmetry, SYZ fibration)
- Dynamical systems and potential theory (dynamics on Berkovich spaces)
- p-adic differential equations (radii of convergence on Berkovich curves)
- Inverse Galois problem

- 1984 Bieri, Groves, and Strebel associate polyhedral structures to ideals of $\mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$
- 1998 the adjective "tropical" is found for the first time in the literature (cf. *Tropical semirings* by Jean-Eric Pin)
- 2005 Mikhalkin establishes that Gromov-Witten invariants of $\mathbb{P}^2(\mathbb{C})$ are controlled by their tropical counterparts
- 2007 Tevelev defines tropical compactifications for subvarieties of the torus (later generalized to subvarieties of toric varieties)
- 2010's Tropicalization techniques are applied fruitfully to moduli spaces
 - 2018 Tropical proof of Rota's log-concavity conjecture (Adiprasito-Huh-Katz)

- 1984 Bieri, Groves, and Strebel associate polyhedral structures to ideals of $\mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$
- 1998 the adjective "tropical" is found for the first time in the literature (cf. *Tropical semirings* by Jean-Eric Pin)
- 2005 Mikhalkin establishes that Gromov-Witten invariants of $\mathbb{P}^2(\mathbb{C})$ are controlled by their tropical counterparts
- 2007 Tevelev defines tropical compactifications for subvarieties of the torus (later generalized to subvarieties of toric varieties)
- 2010's Tropicalization techniques are applied fruitfully to moduli spaces
 - 2018 Tropical proof of Rota's log-concavity conjecture (Adiprasito-Huh-Katz)

Tropical approach applies also to

- Geometric group theory (Bieri–Groves)
- Biology (e.g phylogenetic trees)
- Algebraic statistics
- Economics
- Training neural networks

- 1990's Berkovich shows that a "nice" Berkovich space retracts continuously on a finite polyhedral complex (its skeleton)
 - 2009 Payne shows that "Berkovich analytification is the limit of all tropicalizations"
 - 2013 Tropical perspective on skeletons of Berkovich curves (Baker-Payne-Rabinoff)
 - 2016 Definition of essential skeletons for varieties over $\mathbb{C}((t))$ (Nicaise-Xu)
 - 2017 Gubler-Rabinoff-Werner generalize BPR in higher dimensions

- 1990's Berkovich shows that a "nice" Berkovich space retracts continuously on a finite polyhedral complex (its skeleton)
 - 2009 Payne shows that "Berkovich analytification is the limit of all tropicalizations"
 - 2013 Tropical perspective on skeletons of Berkovich curves (Baker-Payne-Rabinoff)
 - 2016 Definition of essential skeletons for varieties over $\mathbb{C}((t))$ (Nicaise-Xu)
 - 2017 Gubler-Rabinoff-Werner generalize BPR in higher dimensions

Applications to

- Tropical obstruction to specialization of (stable) rationality (Nicaise-Ottem)
- Ramification of covers of curves (Temkin, Amini-Baker-Brugallé-Rabinoff)
- Bogomolov conjecture for totally degenerate abelian varieties (Gubler)
- Brill-Noether theory (via divisors on tropical curves)
- Cohomology of $\mathcal{M}_{g,n}$ (Chan–Galatius–Payne)
- Uniform bounds for the number of points of curves over number fields (Katz-Rabinoff-Zureick-Brown)

- Introduction and motivation [you are here]
- e Berkovich spectra and analytification
- Models of Berkovich spaces (or: how to study degenerations using Berkovich spaces and viceversa)
- Curves I
- Curves II
- Higher dimensional varieties (or: why can't everything be as nice as in dimension 1)
- Tropical geometry and tropicalization
- Tropicalization and analytification
- Berkovich + tropical moduli I ($M_{0,n}^{\text{an}}$ and $M_{0,n}^{\text{trop}}$?)
- Berkovich + tropical moduli II ($M_{g,n}^{\text{an}}$ and $M_{g,n}^{\text{trop}}$?)

Essential Bibliography

- V. Berkovich, "Spectral theory and analytic geometry over non-Archimedean fields", Mathematical Surveys and Monographs, (1990)
- B. Conrad "Several approaches to non-archimedean geometry", notes from Arizona Winter School (2007)
- W. Gubler "A guide to tropicalizations" In: Algebraic and combinatorial aspects of tropical geometry, (2013)
- D. Maclagan, B. Sturmfels, "Introduction to tropical geometry", Graduate studies in Mathematics, AMS, (2015)
- A. Werner "Analytification and Tropicalization Over Non-archimedean Fields". In: Non-archimedean and tropical geometry (Simons Simposium), (2016)
- L. Caporaso "Tropical methods in the moduli theory of algebraic curves", In: Algebraic Geometry: Salt Lake City 2015. Proc. Sympos. Pure Math (2018)
- H. Markwig, "Tropical Curves and Covers and Their Moduli Spaces", Jahresbericht der DMV (2020)
- M. Chan, "Moduli spaces of curves: classical and tropical", (2021)