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Abstract

Hurwitz trees were introduced by Henrio and Brewis-Wewers to understand actions of finite
order over p-adic discs. We give a geometric interpretation of these objects in terms of non-
archimedean analytic geometry in the sense of Berkovich. We extend the definition to the global
context, introducing the notion of a Berkovich-Hurwitz graph. This allows to study liftings of
branched Galois covers of (possibly singular) curves. In the end we discuss the possibility to
study deformations of covers from an analytic point of view to approach lifting problems with
methods coming from tropical geometry.

Résumé

Les arbres de Hurwitz ont été introduits par Henrio et Brewis-Wewers pour éclaircir les pro-
priétés des actions d’un groupe fini sur le disque p-adique. Nous donnons ici une interprétation
géométrique de ces objets dans le contexte de la géométrie de Berkovich. Ensuite, on définit
les graphes de Hurwitz, qui permettent d’étudier les relèvement des revêtements ramifiés de
courbes (pas forcement lisses). Avec ceci, on peut étudier les déformations de ces revêtements
d’un point de vue analytique et éclaircir certains aspects de la relation entre géométrie tropicale
et problèmes de relèvement.
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0 Introduction

Tamely ramified local actions of finite groups on curves are completely determined by Kummer
theory. The wildly ramified case is much more difficult and its complexity is effectively encoded
via the theory of Hurwitz trees, as introduced in [Hen] and [BW09]. In this paper we give a
non-archimedean analytic interpretation of Hurwitz trees, in the framework of Berkovich spaces.
This allows to describe the features of Hurwitz trees in a homogeneous way and to describe local
actions in a purely analytic fashion. Using formal patching, we are able to investigate the global
situation, where finite Galois covers of curves are considered. As a result, one can apply the
theory of the different function and compatible skeletons of finite morphisms of Berkovich curves
to the algebraic case.

1 The local picture: Berkovich-Hurwitz trees

Let K be a complete discretely valued field of mixed characteristic (0, p), let R be its valuation
ring, k its residue field, that we suppose algebraically closed, and π an uniformizer generating
the maximal ideal m. In this section we recall the definition of a Hurwitz tree associated with a
local action in characteristic zero and show a description of the theory of Hurwitz trees in the
framework of Berkovich non-archimedean analytic geometry.

1.1 The local lifting problem

Definition 1.1. A local action in characteristic p is a pair (k[[t]], G) where G ⊂ Autkk[[t]] is a
finite subgroup of k-automorphisms. A local action in characteristic zero is a pair (R[[T ]], G′)
where G′ ⊂ AutRR[[T ]] is a finite subgroup of continuous R-automorphisms.

We assume for simplicity that the fixed points in the rigid generic fiber of a local action in
characteristic zero belong to K. This can always be done after replacing K with a finite
extension. A natural way to construct local actions is to consider the action of a group G on a
smooth projective curve X. In this setting, for every closed point x of X, the stabilizer of G at
x acts on the local ring ÔX,x, which is a ring of formal power series.

Remark 1.2. By the structure theorem of complete discrete valuation rings in equicharacteristic,
one deduce that any local action (k[[t]], G) yields k[[t]]G ∼= k[[z]]. For a local action (R[[T ]], G′),
a result of Raynaud ([Ray99], Proposition 2.3.1) ensures that R[[T ]]G

′ ∼= R[[Z]]. Hence, in every
characteristic it is equivalent to study local actions and finite Galois covers of algebras of formal
power series.

Example 1.3 (Deformation from Kummer to Artin-Schreier).
Let G = Z/pZ act on R[[T ]] in such a way that the m ramification points have the same
valuation. Then, the equation of the covering is of the special Kummer type Xp = (1 + Tm).
After performing the substitution X = 1 + βU and S = β

p
mT , the Kummer equation becomes

(1+βU)p = (1+βpTm) ⇐⇒ (βU)p+p(βU)p−1+· · ·+pβU = βpTm ⇐⇒ Up+· · ·+ p

βp−1
U = Tm.

When vp(β) = 1
p−1 the reduction mod. p of this equation is up − cu = tm, with c 6= 0 namely

an Artin-Schreier equation.

The deformation from Kummer to Artin-Schreier equations ([OSS89]) is used by Green and
Matignon to show that every action of Z/pZ lifts to characteristic zero [GM99, II, Theorem
4.1]. Indeed, given an equation for a covering in characteristic p one can explicitly find a
Kummer equation giving rise to a lifting. The existence of deformations of a given cover are
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equivalent to the existence of some differential forms. This is the idea that gives rise to the
definition of Hurwitz tree as introduced by Henrio in [Hen]. In the first part of this paper, we
work with the following generalization, due to Brewis and Wewers [BW09].

In order to state the definition of a Hurwitz tree, we shall briefly establish some terminology.
A rooted tree is a finite, oriented tree that has a unique minimal vertex (called the root) for the
partial ordering ‘≺’ that defines the orientation. The maximal vertices, that can be multiple, are
called the leaves of the rooted tree. Given e an edge of a rooted tree, we denote the endpoints
of e by s(e), t(e), in such a way that s(e) ≺ t(e).
A K-valued virtual character of a finite group G is a function χ : G −→ K that is invariant
under conjugation by elements of G, sometimes also called class function. A virtual character is
a (representation theoretical) character if it arises as the trace of a suitable finite dimensional
representation of G over K.

Example 1.4. Let G be any finite group. The class function uG : G −→ Z defined by

uG(σ) =

{
−1 if σ 6= 1

|G| − 1 if σ = 1.

gives rise to a character, called augmentation character of G. Indeed it is not difficult to show
that it is associated with the augmentation representation.

Example 1.5. Let G = Z/pmZ and fix a generator σ of G. Brewis and Wewers prove that the
class function δmultG : G −→ Q defined by

δmultG (σa) =

{
−pi+1

p−1 if ordp(a) = i < m

0 if σa = 1.

gives rise to a Q-valued character1, a generalization of the notion of a character, discussed in
[BW09, §2.1].

Definition 1.6 (Hurwitz tree). Let G be a finite group and let K be a discrete valuation ring
of mixed characteristic (0, p). A G-Hurwitz tree over a field K is the datum (T, [Gv], ae, δv) of:

• a metrized rooted tree T , with set of edges E, set of vertices V and root v0 ∈ V ;

• for every vertex v ∈ V , the conjugacy class [Gv] of a subgroup Gv ⊂ G;

• for every edge e ∈ E, a character ae : G→ K;

• for every vertex v ∈ V , a Q-valued character δv : G→ K

satisfying the following conditions:

HT1. one has Gv0 = G and Gb cyclic for every leaf b. Moreover, for every v, w ∈ V such that
v ≺ w one has, up to conjugation, Gw ⊆ Gv;

HT2. for every edge e ∈ E, one has

ae =
∑
b∈Be

uGb ,

where Be is the set of leaves that are greater or equal than t(e);

1To fix: this notion is not central in the theory of Hurwitz tree and we shall probably avoid it even if it is part
of the original definition.
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HT3. for every edge e ∈ E one has

δt(e) = δs(e) + εe · (ae − uGt(e))

where εe is the length of the edge e;

HT4. for every leaf b ∈ B one has δb = δmultPb
, where Pb is the Sylow p-subgroup of Gb.

Brewis and Wewers associate a Hurwitz tree to any local action in characteristic zero. This
allows them to study a necessary condition for lifting that requires the existence of Hurwitz
trees with special properties. They call it the Hurwitz tree obstruction to lifting.2 The first goal
of this paper is to give an alternative construction of the Hurwitz tree associated with a local
action in characteristic zero, that relies on the theory of compatible skeletons for morphisms of
Berkovich curves.

1.2 The Berkovich-Hurwitz tree of a local action

Let Λ = (R[[T ]], G) be a local action in characteristic zero. The inclusion R[[T ]]G ⊂ R[[T ]] can
be regarded as a G-Galois cover of formal schemes Spf(R[[T ]]) → Spf(R[[T ]]G). To this cover,
we can apply a suitable generic fiber functor to get a G-Galois cover ηΛ : X ′ → X of Berkovich
curves, as described in what follows. In the paper [Ber96b], Berthelot associates with every
formal schemes locally formally of finite type X its generic fiber, a rigid analytic space over K.
This construction, which is functorial in X , can be adapted to get a Berkovich space, that we
denote X i. This is well illustrated in [Ber96a, §1].3 The easiest example of generic fiber of a
formal scheme formally of finite type is the Berkovich open disc4, D◦ ∼= Spf(R[[T ]])i.

1.2.1 Skeletons and the metric realization

Thanks to Remark 1.2, we know that R[[T ]]G ∼= R[[Z]] so that the generic fiber of the cover
induced by Λ is a G-Galois cover of the form pΛ : D◦ → D◦. The fundamental result that
allows us to recover the Hurwitz tree in this context is obtained by applying the theory of
skeletons to the cover pΛ. Most of the results in the this section are well-known, but are
scattered in the literature with slightly varying assumptions. For the sake of completeness and
the convenience of the reader, we recall them pointing to proper references when necessary.
Recall from [Duc14, §3.1.11] that a K-analytic space X is said to be quasi-smooth in x ∈ X if
dimH(x)Ω

1
X ⊗H(x) = dimx(X). It is called quasi-smooth if it is quasi-smooth in every point.

Definition 1.7. Let X be a quasi-smooth K-analytic curve. A skeleton of X is a subgraph
ΓX ⊂ X such that X \ ΓX is a disjoint union of virtual open discs.
Let φ : X → Y be a finite morphism of quasi-smooth Berkovich curves. A skeleton of f is a
pair (ΓX ,ΓY ) such that:

• ΓX is a skeleton of X and ΓY is a skeleton of Y ;

• the set of ramification points of φ is contained in ΓX ;

• ΓX = φ−1(ΓY ) and every vertex of ΓX is the preimage of a unique vertex of ΓY .

2Maybe briefly sketch here the ideas of Brewis-Wewers construction
3The reader should be aware that in Berkovich’s paper, formal schemes locally formally of finite type are

called “special”
4defined as D◦ = {x ∈ A1,an

K : |T (x)| < 1}. This shall be introduced in a short introduction about Berkovich
spaces where the analytic spectrum, the points ηa,r, types of points in curves, and boundaries are also discussed
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Every strictlyK-analytic quasi-smooth curve admits a skeleton (cfr. [Duc14, Théorème (5.1.14)]).
The existence of skeletons for morphism of quasi-smooth curves is discussed in Bojković paper
[Boj16], that generalizes [ABBR15] and [Tem17]. A direct consequence of [Boj16, Theorem
3.0.2] is the following:

Theorem 1.8. Let φ : X → Y be a finite morphism of quasi-smooth K-analytic curves admit-
ting finite graphs ΓX and ΓY as skeletons. Then, there exists a skeleton (Γ′X ,Γ

′
Y ) of φ such that

ΓX is contained in Γ′X and ΓY is contained in Γ′Y .

Examples.

• The singleton {η0,1} is a skeleton for the closed unit disc D• =M(K{z}).

• The Kummer cover D• → D• given by z → zn (n ≥ 2) has the following skeleton:

η0,1 η0,1

00

• 5

If ΓX is a skeleton of X, then every other subgraph Γ′X ⊂ X containing ΓX is also a skeleton
of X. In this case, we say that Γ′X is an enhancement of ΓX .
A useful example of enhancement is given by the following proposition, which is a partial
analogue of the slope formula [BPR16, Theorem 5.54].

Proposition 1.9. Let f be a non-constant meromorphic function on X, and let Γf ⊂ X be
the set of points where the real valued function − log |f | is not locally constant. Then, Γf is a
locally finite subgraph of X.

Proof. Since f is non-constant and meromorphic, the set of its zeroes and poles, that we denote
by D(f), is locally finite and consists only of points of type (1). Therefore, it defines a divisor
on X, that we denote by div(f). Moreover, the function − log |f | : X \D(f) → R is piecewise
linear on X, and by the non-archimedean Poincaré-Lelong formula [Thu05, Proposition 3.3.15],
it has slope different from zero only in the points where δdiv(f) 6= 0 (For a divisor D, recall that
δD is the extension by linearity of the Dirac measure concentrated on the support of D with
value [H(x) : K] at every x ∈ Supp(D)). Hence, the set of vertices of Γf is also locally finite,
and this completes the proof.

It follows from the fact that X retracts by deformation on any of its skeletons that there exists a
unique minimal enhancement of ΓX containing Γf . We denote this enhanced skeleton by ΓX,f .

Example 1.10. For a closed annulus X =M(K{S,T}ST−a ), there exists a unique minimal skeleton ΓX ,
which is the segment joining the two points of its Shilov boundary, namely η0,1 and η0,|a|. Let
f =

∑
i∈Z aiT

i be a non-constant regular function on X and let Z = {x ∈ X : |f(x)| = 0} be the
set of zeroes of f . Then, div(f) =

∑
x∈Z [H(x) : K]x, and ΓX,f is the unique connected subtree

of X that has Z ∪ {η0,1, η0,|a|} as set of leaves. The function f is invertible if and only if Z = ∅,
that is, precisely when ΓX,f = ΓX . At the same time, we know that f is invertible if and only if
its Newton polygon is a segment. This is one of several examples of the relationship between the
theory of skeletons and Newton polygons, a deep correspondence whose investigation is beyond
the scope of the present paper.

5add example of equicharacteristic lifting of a Katz-Gabber cover to R = k[[$]]
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In order to apply the theory of skeletons to Hurwitz trees, we need to introduce metric structures.
This is easily done thanks to the construction of the skeletal metric described in [BPR13, §5.3],
and we just need to transpose this notion in the setting of skeletons of quasi-smooth curves
over a complete discrete valuation field. From definition 1.7 follows that the endpoints of an
edge e ∈ E(ΓX) are either both of type (2) or one is of type (1) and the other is of type (2).
In the first case, one can show that the preimage of the edge e of the retraction X → ΓX is a
virtual open annulus, i.e. a space Xe defined over a finite separable extension of K, the field
of constants s(Xe) defined by Ducros in [Duc14, (3.1.1.4.)], such that there exists an element

a ∈ K̂ with Xe ⊗s(Xe) K̂
∼= M(K̂{S, T}/ST − a). This element is far from being unique, but

its norm |a| ∈ Q∩]0, 1[ is, so that we can set the length of e to be `(e) = − log |a|. If one of the
endpoints of e is of type (1), we set the length of e to be ∞. This construction gives a unique
length function ε : E(ΓX) −→ R+ ∪ {∞} that makes ΓX into a metrized graph.

Definition 1.11. Let Λ = (R[[T ]], G) be a local action in characteristic zero. The metric
realization of the Hurwitz tree attached to Λ is the metrized minimal skeleton of the induced
G-cover pΛ : D◦1 → D◦2, where D◦1 is the generic fiber of Spf(R[[T ]]) and D◦2 is the generic fiber
of Spf(R[[T ]]G).6

Let ΓΛ = (Γ1,Γ2) be the metric realization of the Hurwitz tree attached to Λ = (R[[T ]], G).
Since the cover pΛ is Galois, then one has that Γ2 = Γ1/G. In what follows, we often identify
ΓΛ simply with Γ1 to simplify notations.

Remark 1.12. Every vertex v ∈ ΓΛ of the metric realization of a Hurwitz trees is a type 2 point
of D◦1. Since we suppose that all the ramification points of pΛ are K-rational, we have that
v = ηa,ρ for a ∈ K and ρ ∈ |K×|. This allows to associate canonically with v the closed disc
Dv = {x ∈ D◦1 : |x − a| ≤ ρ}. For every edge e ∈ E(ΓΛ) originating in v, we have a unique
open disc inside Dv that contains e. We call this disc De and we associate with it the stabilizer
Ge = {σ ∈ G : σ(De) = De}, which we implicitly consider part of the metric realization of a
Hurwitz tree. The length of e can be easily computed as `(e) = log |ρw| − log |ρv|, where w is
the other endpoint of e, and ρv (resp. ρw) is the radius of Dv (resp. Dw).

Example 1.13. Let ζ3 be a primitive third root of unity and let σ be the automorphism of
Zur3 (ζ3,

√
3)[[T ]] defined by T 7→ T−3

T−2 . It has order 3 and on the special fiber it reduces to the

automorphism σ̄ : F̄p[[t]] → F̄p[[t]] given by t 7→ t
t+1 . Solving the equation T = T−3

T−2 gives two

distinct fixed points, F0 = 3+
√
−3

2 and F1 = 3−
√
−3

2 . Since we have v(F1 − F0) = 1
2 , then the

Hurwitz tree is a pair of identical skeletons, each one of which has two vertices η0,1, η0, 1√
3

and

three edges e1, e2, e3:

η0,1

P

F1F0 −→

η0,1

P

F1F0

The length function is such that ε(e1) = 2; ε(e2) = ε(e3) =∞.

This analytic realization of a Hurwitz tree bears similarity with other analogue constructions,
but presents two main advantages: the first is that to each vertex of a Hurwitz tree is associated

6These are to be intended as Berkovich generic fibers of special algebras. Add a section to explain this.
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the residue field of the corresponding point of D◦i . This provides additional algebraic information
encoded in this combinatorial object. The second, is that one can enhance the Hurwitz tree
and get richer skeletons, that can improve our understanding of the cover pΛ. As an example
of the usefulness of this approach, let us prove a result on the interplay between the shape
of Hurwitz trees and ramification, exploiting the existence in Berkovich context of a different
function and of a Riemann-Hurwitz type formula, as established by Cohen–Temkin–Trushin in
[CTT16]. Recall that a vertex v of an oriented tree is called terminal if every successor vertex
of v is maximal.

Proposition 1.14. Let v be a vertex in the metric realization of ΓΛ, the Hurwitz tree associated
with a local action in characteristic zero Λ = (R[[T ]], G). If there is a successor vertex w � v
such that:

1. w is maximal for the ordering on V (ΓΛ);

2. for every vertex z � v, the inertia group Gz is equal to G;7

then v is terminal.

Proof. By maximality of w, the cover pΛ restricts on a cover of discs pΛ,w : Dw → Dw′ with a
unique ramification point. Since R is a ring of mixed characteristic, then Gw is cyclic and pΛ,w

is a Kummer cover of order |Gw|.8 The fact that pΛ,w is Kummer immediately implies that the
slope of the Cohen–Temkin–Trushin different function δΛ associated with pΛ on the edge with
endpoints v and w is zero. In other words, the absolute value of the different of the extension
H(v)/H(pΛ(v)) is equal to |deg(pΛ,w)|, which is also | deg(pΛ)| by assumption 2. Since in mixed
characteristic the absolute value of the different can not be smaller than the valuation of the
degree of the associated function, we deduce that δΛ is minimal at v. In particular all the slopes
of the function δΛ at the edges having v as an endpoint are positive.
To prove the proposition, we suppose by contradiction that there is a non-maximal vertex z
such that z � v, and consider the edge e originating in v and terminating in z. By looking at
the local Riemann–Hurwitz formula [CTT16, Theorem 4.5.4] at the vertex z, we have:

−2 = −2|G|+ (|G| − 1− sleδΛ) +
∑
b

(|G| − 1− slbδΛ),

where sleδΛ is the slope of the different function on the edge −e (i.e. e with reversed orientation),
and b runs over all the other edges of the Hurwitz tree originating in z. By minimality of δΛ

on v, sleδΛ ≤ 0; by non-maximality of z, there are at least two edges of ΓΛ originating in z.
Then, at least one of these edges is such that the slope of the different function on it is positive.
By repeatedly applying local Riemann–Hurwitz formulas to the other endpoint of edges with
positive slope, we get to the situation where we have a terminal vertex with m ≥ 2 maximal
successor vertices. We can then apply local Riemann–Hurwitz one last time at this terminal
vertex to get

−2 = −2|G|+ (|G| − 1− sle′δΛ) +m(|G| − 1),

where sle′δΛ is the slope of the edge e′ connecting the terminal vertex with its unique direct
predecessor. In fact we know that the slopes at maximal edges are always zero by what we
showed in the first part of the proof. Now, since sle′δΛ is negative by assumption, we find that
m ≤ 1, which is a contradiction. Then z must be maximal, and the same argument applies to
every successor of v.

7There should most likely be a counter-example to this result when G = Z/p2Z and Gw = Z/pZ provided by
an explicit order p2 cover.

8It follows from the techniques of proof of [Col87, Proposition 13], but it is hard to find a direct reference for
this: maybe it should be written down as a separate lemma
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If G = Z/pZ, then condition 2 is always satisfied, and Proposition 1.14 is equivalent to a well
known fact about Hurwitz trees (shown by Green-Matignon in [GM99, Proposition 1.2.]).

Remark 1.15. This proof can not be adapted in the equicharacteric p case9.

1.2.2 Piecewise linear functions and the ramification theoretical realization

The proof of Proposition 1.14 makes a crucial use of ramification theory, as it relies on the dif-
ferent function and a formula of Riemann–Hurwitz type. In this section, we define ramification
theoretical invariants that can be attached to the metric realization of an Hurwitz tree, in order
to make explicit the relationship between the different function and the (Q-valued) characters
appearing in Definition 1.6. This construction yields a “ramification theoretical” realization of
a Hurwitz tree associated with a a local action Λ = (R[[T ]], G). In the rest of the section, we
denote by pΛ : D◦1 → D◦2 the analytic morphism of open discs induced by Λ.

Artin and depth functions on D◦

Let σ ∈ G be an automorphism of finite order of R[[T ]]. The function

δσ : D◦1 −→ R
| · |x 7−→ − log |σ(T )− T |x

is called the depth function associated with σ. It is piecewise affine when restricted to every
open subset of D◦1 homeomorphic to an interval of R. This follows easily from the fact that
σ(T )−T is a regular function on D◦1, by realizing such intervals as skeletons of open annuli and
pointed discs and computing the Newton polygon of σ(T )−T on them (cf. [Thu05, Proposition
2.2.24]). For every point x ∈ D◦1 there is a unique interval having as oriented endpoints η0,1 and

x.10 If we denote by
→
∂ δσ(x) the left derivative at the point x of the depth function restricted

to this interval, then the assignment

aσ : D◦1 −→ Z

x 7−→
→
∂ δσ(x)

defines a function that we call the Artin function associated with σ.

Theorem 1.16. Let ΓΛ be the metric realization of the Hurwitz tree associated with Λ, and
let {ae, δv}e∈E(ΓΛ),v∈V (ΓΛ) be the Artin and depth characters defined by Brewis and Wewers in
[BW09, §3]. Then for every σ ∈ G \ {id} we have the following:

1. The Artin function aσ vanishes outside ΓΛ, is constant on any edge e ∈ E(ΓΛ), and for
such an edge we have

ae(σ) = −aσ(e).

2. The depth function is locally constant outside ΓΛ, and for every vertex of ΓΛ we have

δv(σ) = |Gv|δσ(v).

As a result, the assignments σ 7→ aσ(e) and σ 7→ δσ(v) are class functions defining characters
of G and satisfying the conditions of Definition 1.6.

9Add a counterexample here
10It should be clear what η0,1 represents from previous discussions about boundary points
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Proof. Let U ⊂ D◦1 be an open subset such that U ∩ ΓΛ = ∅. As ΓΛ contains by definition
all the fixed points for the action of G, the regular function σ(T )− T has no zeroes in U , and
therefore its restriction to U is invertible. From this we get that δσ is locally constant outside
ΓΛ and equivalently that aσ(x) = 0 for every x /∈ ΓΛ.
After [BW09, Definition 3.1] and the construction of a Hurwitz tree associated to a local action,
the depth character at a vertex v ∈ V (ΓΛ) is given by δv(σ) = |Gv|·log |ηv(σ(T )−T )| = |Gv|δσ(v)
if σ represents an element of the conjugacy class [Gv], and δv(σ) = 0 otherwise. For every element
σ not representing a class in [Gv], this does not fix the closed disc corresponding to v in D◦.
Then we have |σ(T )− T |v = 1, that is |Gv|δσ(v) = 0 = δv(σ) also in this second case.
After [BW09, Definition 3.5], the Artin character is given by −ae(σ) = #e(σ(T ) − T ), the
number of rigid points fixed by σ contained in the open disc associated to e. This number is
also, by a Newton polygon argument, the slope of the piecewise affine function σ(T )−T on the
edge e, which is precisely the definition of aσ(e).

Remark 1.17. One of the corollaries of Theorem 1.16 is the formula [BW09, Proposition 3.8],
that allows Brewis and Wewers to show that the Artin and depth character satisfy property
(HT3) of the definition of a Hurwitz tree. In our language, this simply means that, for every
σ ∈ G\{id} and two consecutive vertices v, v′ ∈ ΓΛ, the number δσ(v)−δσ(v′) is the slope times
the length of the edge joining v and v′, which is clearly true by piecewise affinity. We consider
this a first evidence of the usefulness of having a piecewise affine structure on our ramification
data.

Definition 1.18. Let Λ = (R[[T ]], G) be a local action in characteristic zero. The ramification
theoretical realization of the Hurwitz tree attached to Λ is the metric realization ΓΛ of the
Hurwitz tree associated with Λ, endowed with the restrictions to ΓΛ of the Artin and depth
functions aσ, δσ for every element σ ∈ G.

Remark 1.19. Let v ∈ V (ΓΛ) be a vertex and e ∈ E(ΓΛ) be an edge of the Hurwitz tree starting
in v. The pair (v, e) defines a rank-2 valuation on R[[T ]], and therefore a point in the adic open
unit disc in the sense of Huber, classically called of type (5). For a non-trivial σ ∈ G, the pair
(δσ(v), aσ(e)) can be retrieved by evaluating σ(T ) − T in this type (5) point, and the Artin
function is then associated to the branch (or direction) determined by e, which is consistent
with the definition given here in terms of derivative of the depth function.

The Artin and depth characters are tightly related to invariants that appear in Kato’s theory of
Swan conductors, as exposed in Brewis’ PhD thesis [Bre09]. In the same spirit, the Artin and
depth functions are related both to Kato’s different and to Temkin’s theory of wild ramification
of Berkovich curves by the following result.

Proposition 1.20. Let pΛ : D◦1 → D◦2 be the finite morphism induced by a local action in mixed
characteristic Λ = (R[[T ]], G). Then the restriction of the Cohen-Temkin-Trushin different
function on the Hurwitz tree produces a function δΛ : ΓΛ → [0, 1] that can be expressed as

δΛ(y) =
∏

σ∈Gy \{1}

δσ(y)

for every y ∈ ΓΛ which is not a terminal vertex, where Gy ⊂ G is the stabilizer of y.

Proof. Let y ∈ D◦1 of type 2 or 3, and call x = pΛ(y) ∈ D◦2. Since we suppose that the ramifi-
cation points of pλ are all K-rational, then there are no non-trivial algebraic extensions of K
contained in H(y) whenever y ∈ ΓΛ. Hence, the extension H(y)|H(x) has all the properties of an
extension of 1-dimensional analytic K-fields as treated in [CTT16] even if K is not algebraically

9



closed, and the different function is well defined. Moreover, H(y)|H(x) is Gy-Galois and we can
fix a parameter ty ∈ H(y) such that H(y) = H(x)[ty]. If P is the minimal polynomial of ty over
H(x), then P ′(ty) generates the annihilator of the module of relative differentials ΩH(y)◦|H(x)◦

(cf. [GR03, Claim 6.3.22]). Then we can express the different as

δΛ(y) = |P ′(ty)| =
∏

σ∈Gy\{1}

|ty − σ(ty)| =
∏

σ∈Gy\{1}

δσ(y),

and the result follows.

Kato’s theory of different is actually richer, and consists also of a differential part, encoding
more information than that described by the depth function. We exploit this higher complexity
in section 1.2.4, allowing us to rephrase the local lifting problem in terms of Berkovich-Hurwitz
trees. However, already the non-differential part of the ramification invariants can lead to
interesting results. To illustrate this, we give a proof of a classical theorem on local actions
[GM99, Theorem 3.1.] in a purely analytic fashion.

Theorem 1.21. Let Λ = (R[[T ]],Z/pZ) be a local action with m+ 1 rigid ramification points.
If m < p, then the Hurwitz tree is elementary, that is, it has m + 1 edges and a unique vertex
of degree > 1.

Proof. Let pΛ : D◦1 → D◦2 denote, as usual, the cover of open discs associated to Λ. The slope of
the different function δΛ on the Hurwitz tree ΓΛ ⊂ D◦1 can be easily deduced from the number
of ramification points in the following way. If e is a terminal edge, then the cover restricted to
the corresponding pointed disc is Kummer, and slδ(e) = 0. If e is any other edge, then we have
(applying local RH formula) slδ(e) = −k(p− 1), where k is the number of terminal edges t such
that t � e. If ΓΛ is not elementary, this means that the different function decreases from 1 to |p|
with at least two successive distinct slopes m(p− 1), and m′(p− 1) on two non-terminal edges
that we denote by e and e′. After choosing coordinates T1 and T2 for D◦1 and D◦2 respectively, we
can translate these slopes to a statement on the coefficients of the presentation associated with
pΛ in the following way. Thanks to the classification of étale annular p-covers [BT17, Theorem
4.3.8], on the open annulus whose skeleton is e we can write

T2 = T p1 + cTn1 , with n = m(p− 1) + p.

This occurs because the slope of the different can be written also as p − n, so that we have
n = m(p− 1) + p. Moreover, the restriction of pΛ on the open annulus whose skeleton is e′ has
a presentation of the form

c′T ′2 =
∑
i

aiT
′
1
i

= (rT ′1 + c)p + c(rT ′1 + c)n,

Now, the dominant term of the derivative of the series on the right hand side must be of degree
n′ = m′(p−1)+p > p, so that we can compute it by looking only at the terms of degree greater
than p in

c(rT ′1 + c)n =
n∑
k=0

(
n

k

)
cn−k+1rkT ′1

k
.

The condition that m < p is equivalent to n < p2, and n is not divisible by p. Hence the binomial
coefficient

(
n
p+1

)
is not divisible by p and then the degree p+ 1 term becomes dominant in the

derivative. But this would imply that n′ = p+ 1 which is not possible, as it would imply p = 2
and m′ = 1, and then the only possibility is that ΓΛ is elementary.

10



Remark 1.22. In the language of [BT17], we can prove that for m < p equidistance is the only
possibility also by showing that there is not a possible p-enhancement associated with a non
elementary Hurwitz tree having m+ 1 < p+ 1 terminal vertices. This is equivalent to prove the
non-existence of certain bivariant exact differential forms, and hence boils down to the original
computations by Green and Matignon.

1.2.3 Hurwitz subtrees

Given a Hurwitz tree associated with a local action in characteristic zero, we can consider its
proper subtrees. We show that they can be associated with the ramification theoretical realiza-
tion of a Hurwitz tree corresponding to other local actions, determined uniquely from the first
action and the shape of the tree. From this we deduce obstructions to the realization of certain
Hurwitz data as coming from local actions.
Let (ΓΛ, {aσ}, {δσ}) be the ramification theoretical realization of a Hurwitz tree coming from a
local action Λ = (R[[T ]], G). Recall that the existence of a metric realization in the Berkovich
context yields a canonical association of any vertex v ∈ V (ΓΛ) with a closed disc Dv ⊂ D◦1, and
of any edge e ∈ E(ΓΛ) with an open disc De ⊂ D◦1. All these discs are centered in a K-rational
point and their radius belongs to |K×|. It is natural for an edge e originating in a vertex v
to restrict the action of Ge to De, and in this way get a local action Λe = (R[[T ′]], Ge). It
is immediate from the definitions that the ramification theoretical realization of ΓΛe consists
of the metric realization of the subtree of ΓΛ rooted in v with root-edge e, endowed with the
restriction of the Artin and depth functions to ΓΛe .

In this section we discuss how the shape of an Hurwitz tree is related to the shape of certain
subtrees. In order to do so, let us fix a pair (v,Gv) consisting of a vertex of ΓΛ and the stabilizer
of the associated disc Dv. The action of Gv can be reduced modulo the uniformizer of R to give
rise to an automorphism of the residual curve at v that fixes the point at infinity. In this way,
we get an homomorphism Gv → Aut(A1

k).
11

Lemma 1.23. Let σ̄ ∈ Aut(k[t]) be an automorphism of finite order. Then one of the following
is verified:

• σ̄(t) = t

• σ̄(t) = ζn · t, with ζn primitive n-th root of unity and (n, p) = 1

• σ̄(t) = t+ b with b ∈ k

or a composition of these.

Proof. We have σ̄(t) = at+ b with a 6= 0. Let n ∈ N be such that t = σ̄n(t) = ant+
∑n−1

i=0 a
ib.

This implies an = 1. Then either a = 1 or a = ζn, which is possible only when (n, p) = 1. In
the first case the condition above becomes t = t+ n · b giving n · b = 0. When b = 0 we get the
identity and when b 6= 0 we get a translation. In the second case a = ζn and σ̄ is a rotation of
order prime to p, possibly composed with a translation of order p.

Corollary 1.24. Let (v,Gv) and β : Gv → Aut(A1
k) as above. If σ ∈ Gv has order divided by

p and β(σ) fixes a closed point of A1
k, then β(σ) = id.

11There is a precise definition of a tangent space of D at v that is homeomorphic via Riemann-Zariski spaces
to the residual curve. We address this theory in the part of this paper describing global Hurwitz graphs.
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This corollary implies in particular that, when the local action Λ is wildly ramified and has at
least a fixed point, then the Hurwitz tree is strictly contained in the Berkovich ramification locus
of pΛ, which is in this case an infinite tree. This is well known by experts in wild ramification of
Berkovich curves (see [Fab13] and [Tem17]), but the determination of the Berkovich ramification
locus of pΛ remains a much more difficult task than to compute the Hurwitz tree of Λ.

Corollary 1.25. Let ΓΛ be an Hurwitz tree coming from a local action in characteristic zero,
and let v be a vertex of ΓΛ. If Gv is a p-group, then the subgroup Gv′ ⊂ Gv does not depend on
the choice of a successor v′ � v. Moreover, for every σ ∈ Gv, one has σp ∈ Gv′.

Proof. We have that Gv′ = Ge where e is the edge joining v and v′. Hence Gv′ = {σ ∈ Gv :
σ(e) = e}. The identification between the space of edges originating at v and closed points of
A1
k yields that σ ∈ Gv is in Gv′ if and only if β(σ) = id. By Corollary 1.24, Gv′ coincides with

Gv′′ for any other choice of a successor vertex v′′ � v. By Lemma 1.23, if β(σ) 6= id then β(σ)
is of order p. Hence σp ∈ Gv′ .
12

1.2.4 The Swan bundle and the differential realization

Potential theory and harmonic functions can be defined on non-archimedean analytic curves,
thanks to the works of Thuillier, and Baker-Rumely. In this section, we study certain analytic
vector bundles that naturally arise from differentials of harmonic functions. Certain global
sections of these bundles can be associated with local actions in order to define ramification
invariants that refine the Artin and depth functions.

Definition 1.26. Let S be a finite polyhedron and Γ a locally finite set of S. A m-harmonic
function h over S \ Γ is a function that is harmonic over S minus its vertices and satisfies, for
every vertex v, the condition ∑

a∈A(v)

λa(h) = −m.

The set of all such functions is denoted by ∂H(S,Γ)m.

Notice that ∂H(S,Γ)0 is the usual vector space of harmonic functions.
Moreover the m defines a structure of graded R-vector space on ∂H(S,Γ) =

⊕
m ∂H(S,Γ)m.

Let σ be an automorphism of order pn of the Berkovich open unit disc Y . Then fσ := σ(T )−T ∈
OY is a regular function. Let Y :=M(K{z}) be the Berkovich unit disc and σ ∈ AutR(R{z}) an
automorphism of finite order. Then it induces by functoriality an homeomorphism Σ : Y → Y
given by Σ(x) = x ◦ σ. With straightforward calculations we can see that Σ(ηa,ρ) = ηa(σ(z)),ρ,
which implies the following easy but important fact.

Lemma 1.27. ηa,ρ is a fixed point for Σ⇔ Σ(D(a,R]) = D(a,R], inducing an homeomorphism
of Berkovich discs.

Having an automorphism of finite order of the open disc σ ∈ AutR(R[[z]]), is a weaker condition.
Nevertheless it still induces an homeomorphism of the open Berkovich disc Y ◦ = Uρ<1D(0, ρ].
Being this function continuous, it can be extended to an homeomorphism of the topological
closure Y ◦ ∪ {η0,1}.
Remark 1.28. Explicit calculations show that |fσ(z)p

n |K < 1 whenever ord(σ)|pn. It would be
useful to say something more about the correspondence σ 7→ fσ mod πR.

12Insert here: a remark about Hurwitz trees of wild actions without fixed points.
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We can wonder what is the set of fixed points by Σ like and if it is interesting to study the
variation in absolute value of some functions on it. Look at σ(z) − z ∈ R[[z]] as an analytic
function over the open unit disc. The values of this functions at rigid points tell us something
about the Berkovich points fixed by Σ.

Lemma 1.29. Consider a rigid point a ∈ mR. The value ρ(a) := |a(σ(z) − z)| is exactly the
radius of the smallest rigid disc fixed by Σ and centered in a.

Proof. The homeomorphism Σ fixes the point ηa,ρ(a) since Σ(ηa,ρ(a)) = ηa(σ(z)),ρ(a) and we know
by hypothesis that |a(σ(z)− z)| ≤ ρ(a), then ηa(σ(z)),ρ(a) = ηa,ρ(a).
Every disc ηa,ρ < ηa,ρ(a) is not fixed, otherwise Σ(ηa,ρ) = ηa,ρ would imply ηa(σ(z)),ρ = ηa,ρ and
then |a(σ(z)− z)| ≤ ρ < ρ(a) giving a contradiction.

The Weierstrass preparation theorem gives us the equality σ(z) − z = πn · u(z) · P (z) with
u(z) unit in R[[z]] and P (z) ∈ R[z] polynomial of degree m which reduces to zm ∈ k[z]. it is
therefore easy to calculate |a(σ(z)− z)| which is p−n·vR(P (a)). For example when considering a
disc without fixed points (and every case reduces to this easy example) the polynomial P (z) is a
constant and |a(σ(z)− z)| = π−n. The fixed rigid discs are then all the η0,ρ with η > π−n. This
set clearly contains η0,1 which is the Hurwitz tree (we allow in fact Hurwitz trees to exist also
in case of no fixed rigid point), but is much bigger than that (it is indeed an “infinite graph”).

Definition 1.30. Let Λ be a local action in characteristic zero. Then, the Swan bundle ΩΛ on
D◦1 is defined as the line bundle Ω(log(Ram)) endowed with the model metric coming from the
stably marked model.

In fact the metric tree is exactly given by the skeleton of the analytic space D(0, 1]−({η0,1}∪∆),
the groups Gv are monodromy groups along subsets of ∆ and the Artin and depth characters
are given by the valuation of analytic functions fσ that take their zeroes in ∆σ. This is a classic
problem in the complex analytic setting: we study the covering space X → C − {P1, . . . , Pn}
given by a logarithmic differential form ω = df

f throughout its monodromy groups. These

give values of the integral
∫
D(P,ρ] f(z)dz around discs centered in fixed points and therefore

informations on the cover.
The use of rigid geometry in the study of lifting problem for coverings has in fact turned out to
be very fruitful, but some features that appear in its use seems to be quite obscure. Showing
that the valuations occurring in the definition of combinatorial datas are actually point of the
analytic space on which we can evaluate our function helps us to clarify the setting.

Theorem 1.31. Let Λ be a local action in characteristic zero of associated group G = Z/pZ.
Then there is a section ω ∈ ΩΛ whose reduction at every vertex of ΓΛ yields a good deformation
datum.13

Proof. Let ω = dg
g . There is a bijection between

{domains on which Ω1
Y (logD) is trivial } and { edges of Γ(D)}

while for each vertex we have the cocycle relation (1.1).
Fix a vertex v of Γ(D). It is a point of type (2), and the reduction of the germ Yv is homeo-
morphic to the affine line A1

k if x = η0,1 and to the projective line P1
k otherwise.

The section ω has a germ ωv ∈ Ω1
Y,v(logD) in an analytic neighborhood of v. The corresponding

reduction ω̃v ∈ Ωk(z) is a differential form on the residual curve of v.

13In the sense of Henrio, or Brezner-Temkin
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The form ωv is logarithmic at every v and, by reduction of coefficients, ω̃v is logarithmic too.
We have to show that ω̃v is exact on every additive vertex v. This is true by residue theorem
in positive characteristic.
Finally the condition of having no zeroes in the open unit disc implies that ω̃v has zeroes just
in infinity for every v, and hence it is a good deformation datum.
This collection of good deformation data on each vertex of Γ(D) gives rise to the lifting (see
[BWZ09]) and the fact that Γ(D) is the Hurwitz tree of the lifting is true by construction.

1.3 Applications to models of torsors

1.3.1 An interpretation of the stably marked model

The action of σ over boundaries can be studied over rings of the form R[[z]]{z−1}. From the
Berkovich point of view these rings are quite natural: if we compactify the Berkovich open unit
disc we are just adding one point (the Gauss point, corresponding to the Gauss valuation (a, 1)).
It is natural to consider as local functions over this point the functions which are uniformly
bounded (on the closed disc) and the construction of the ring R[[z]]{z−1} as completion of
R[[z]] for the Gauss valuation shows that this is right the ring we are looking for.

1.3.2 Combinatorial conditions

Definition 1.32. Let n be a positive natural number, (m1, . . . ,mn)∈ Nn and Y be the Berkovich
unit disc and let f be a regular function over Y . We say that f is of type (m1, . . . ,mn) if
(f + z)p

i−1 − z has exactly mi + 1 zeroes for i = 1, . . . , n.

Example 1.33. Let σ be an automorphism of R[[z]] and let mi be the cardinality of the set
{x ∈ M0(R[[z]]) : Σpi(x) = x}. Then σ(z)− z is a regular function over Y of type (m1, . . . ,mn)
[for any choice of n].

Let x ∈ Y be a point of type (2) and let f be a regular function over Y . Call Z(f) the set of
zeroes of f , and C the curve over k which is the special fiber of a semi-stable model of Y \Z(f).
To f can be associated a divisor over the residual curve Cx in the following way:

divx(f) =
∑
t∈TxS

λx,t(f)[x̃t].

14

1.4 Deformation data beyond the order p case

We want to study, and possibly parametrize, some deformations of Kummer equations in char-
acteristic zero. The formalism of good deformation data is a relative concrete way to use the
informations provided by the differential Swan conductor.

Definition 1.34. Let G = P o N be a cyclic by p group with character χ, f ∈ k(z) and
ω = fdz ∈ Ω1

P1
k
. We call it a good deformation datum with conductor m for G if the following

conditions are satisfied:

• ω is logarithmic.

14Define λx,t(f) as the slope of the function dlog(|f |) on the edge t
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• There is a faithful action of N on Ω1
P1
k

such that

σ.ω = χ(σ) · ω

when σ ∈ N .

• ω has an unique zero, of order m− 1.

This definition applies to the lifting problem in the following sense

Proposition 1.35. Let σ ∈ AutG(k[[t]]). If there exist a formal model X of the unit disc and
a differential form ω(σ) ∈ Ω1

Xs such that its restriction on every terminal irreducible component
of Xs is a good deformation datum, then the action of σ lifts to characteristic zero.

Remark that a good deformation datum matches the differential Swan conductor when restricted
to a boundary action

1.4.1 Reduction of germs

We recall here some results that we need to study the reduction of an invertible sheaf on a
Berkovich curve. Most of these are originally exposed in the articles [Tem00] and [Tem04].15

1.4.2 Differential forms

Modules of differential forms for affinoid algebras are defined (like in algebraic geometry) with
derivations: whenever A is an affinoid algebra over K, then Ω1

A is the universal object repre-
senting the functor Der(A, ·). Glueing the affinoid domains we obtain a locally free sheaf of
OX -modules over any analytic space X.
Let A = K{z} and consider Ω1

Y the sheaf of 1-forms over the Berkovich unit disc. Its global
sections are isomorphic to Ω1

A = Adz and hence we can write fdz for every differential form on
the disc.

Good deformation datas have at most simple poles. We can restrict ourselves to consider a
finite set of points x1, . . . , xn ∈ R and the sheaf Ω(logD) of differential forms having at most
simple poles in the divisor D =

∑
xi. It is a locally free sheaf of rank one, generated by the

form dg
g with g =

∏n
i=1(X − xi).

We can show exactly where does this locally free sheaf trivialize. Call P (xi, ρ) the punctured
disc centered in xi of radius ρ and A(xi, r, R) the annulus centered in xi of big radius R and
small radius r.

Proposition 1.36. Let D =
∑
xi be a divisor on the Berkovich disc, with xi 6= xj for every i

and j. Then the sheaf Ω(logD) is isomorphic to OX on every disc not containing any of the xi,
on every P (xi, ρ) with ρ < min{|xi−xj |, i 6= j} and on every A(xi, r, R) satisfying the condition
that do not exist any xk such that r < |xi − xk| < R.

The proposition says that we are able to construct a set of discs and annuli on which the sheaf
Ω(logD) is trivial. It remains to show which cocycles give the glueing on “intersections”.

1.4.3 Smooth metrics

Let L be an invertible sheaf on a K-analytic curve X, A smooth metric on L is the data, for
each open subset of X of a function − log(‖·‖) : Γ(U,L) → A0(U) such that, if s ∈ L(U) and
s′ ∈ L(U ′) are two invertible sections then s′ = fs on U ∩ U ′ for some f ∈ O×(U ∩ U ′) and

− log(‖s′‖) = − log(‖s‖)− log(|f |).
15Introduce here only what is needed in the following.
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1.4.4 Reduction of differential forms

Lemma 1.37. Let x ∈ Y and s ∈ Lx be a section of a locally free sheaf on Yx. There is a
bijection between analytic subdomains of Yx on which Lx is trivial and open subsets of Ỹx on
which L̃x trivializes.
Moreover let Vα be an analytic subdomain of Yx with a trivialization L|Vα

τ−→ OX |Vα such that

τ(s|Vα) = f . Then τ̃(s̃) = f̃ .

Let v = ηa,ρ be a point of type (2) of Y . Let V be a neighborhood of v, Va = D(a, ρ) ∩ V and
V∞ = {|T − a| ≥ ρ} ∩ V . A germ of differential form is defined by the cocycle

ga,∞(s) = − 1

(z − a)2
s (1.1)

for every section s ∈ Ω1
Y,v(V ).

1.5 Reformulation of the local lifting problem

Let λ = (G, k[[t]]) be a local action in positive characteristic. In this section, we introduce the
notion of λ-compatibility for functions and metrized differential forms on the unit disc. This
notion will be crucial to show that a suitable set of compatible Hurwitz data yields the existence
of a lifting of λ to characteristic zero. Conversely, by using the constructions of previous sections,
any lifting corresponds to a set of compatible data, giving a way to classify liftings of λ.

Theorem 1.38. Let G be a finite group generated by g elements, and λ = (G, k[[t]]) be a local
action in characteristic p > 0. Then λ lifts to characteristic zero if and only if there exists a
metrized bundle (Ω, ‖·‖) over D◦1, and a g-uple of sections (ω1, . . . , ωg) that are λ-compatible. If
this is the case Ω is identified with the Swan bundle of a lifting.

In order to prove this result, we need some preliminary facts.

Proposition 1.39. Let p : Y → X be a lifting of a G-cover in positive characteristic. Then
there exists a character ω : G→ H0(Y,LΩY ) satisfying the conditions of Theorem 1.31, and the
minimal A that can be taken is the Hurwitz tree associated with p.

A characterization of logarithmic differential forms

We have seen how exact and logarithmic forms play an important role to determine liftability of
actions. In general is not easy to understand when a meromorphic form is logarithmic. There
is a well known characterization of logarithmic differential forms in positive characteristic that
can be expressed in the following lemma

Lemma 1.40. A meromorphic differential form ω = g(t)dt on P1
k is logarithmic if and only if

the Weil divisor D of poles of g is such that

ω ∈ Ω1(logD) and ResP (ω) ∈ Fp

for every P ∈ Supp(D).

If we want to find an analogue result over K that reduces to Lemma 1.41 we have to ask for a
characterization of logarithmic differential forms over Y .
The Lemma 1.41 implies that a necessary condition is to have at most simple poles with integer
residues. Moreover we are allowed to study only the case of regular (i.e. without poles) differen-
tial forms. In fact, if f has simple poles in {xi, i = 1, . . . , n} with residues {ai, i = 1, . . . , n}, and
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p =
∏
i(T − xi)ai , then the form fdT is logarithmic if and only if the regular form (f − dp

p )dT
is logarithmic.
Let U = 1 + m{T}, by Weierstrass preparation theorem we can write every function g ∈ K{T}
as a product

g(T ) = up(T )h(T ) with u ∈ K?, p ∈ R[X] and h ∈ U

so that, in the regular case, we have to look for differential forms that can be written as dh
h with

h ∈ U .

Proposition 1.41. Let ω = fdT ∈ Ω1
Y (Y ) such that f =

∑
n anT

n and Wn(xi) the n-th Witt
polynomial in ϕ(n) variables. Let (un) be the sequence recursively defined by{

u1 = −a0

un = − 1
n(an−1 +Wn(ud))

.

Then the following are equivalent:

1. the differential form ω is logarithmic

2. for every n ∈ N, un ∈ m and limn un = 0.

Explicitly, when the conditions are satisfied, we can write ω = dh
h with

h =
∏
n>0

(1− unTn) ∈ U .

2 The global picture: Berkovich-Hurwitz graphs

In this section, we make use of several results about skeletons established in Section 1 in order
to study the ramification of G-covers of analytifications of smooth projective curves over K.
16

16Insert here:

• The local-global principle

• Katz-Gabber covers

• Global lifting problem
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