Addendum to "Weil representation and metaplectic groups over an integral domain"

Gianmarco Chinello Daniele Turchetti

In paragraph 4.3 of [CT15] we claim that γ takes values in the subgroup of fourth roots of unity in \mathbb{R}^{\times} . This is true if the residual characteristic of F, denoted by p, is different from 2, but not always for p = 2. In the latter case, we can actually show that γ takes values in the subgroup of eighth roots of unity in \mathbb{R}^{\times} .

Formulas $\gamma(x_1^2 - ax_2^2 - bx_3^2 + abx_4^2) = (a, b)$ for every $a, b \in F^{\times}$ and $\gamma(f)^2 = (D(f), -1) \gamma(q_1)^{2m}$ for every non-degenerate quadratic form over F are still valid.

- If p is odd then -1 is either a square or a norm from $F(\sqrt{-1})$ to F and so $\gamma(q_4) = (-1, -1) = 1$ and $\gamma(f)^4 = 1$.
- If p = 2 then -1 can be neither a square nor a norm form $F(\sqrt{-1})$ to F and so we cannot conclude that $\gamma(q_4) = 1$. However, we always have $\gamma(q_4)^2 = (-1, -1)^2 = 1$ and so $\gamma(f)^8 = 1$. Hence, γ takes values in the subgroup of eighth roots of unity in R^{\times} as announced.

Now the question is for which finite extension F of \mathbb{Q}_2 we have (-1, -1) = 1. Thanks to theorem 7.6 of [Iwa86] the nonzero norms from $F(\sqrt{-1})$ to F are the elements of F whose norms to \mathbb{Q}_2 lie in the group of nonzero norms from $\mathbb{Q}_2(\sqrt{-1})$ to \mathbb{Q}_2 . Since -1 is not a norm from $\mathbb{Q}_2(\sqrt{-1})$ to \mathbb{Q}_2 , we have (-1, -1) = 1 if and only if $[F : \mathbb{Q}_2]$ is even, i.e., $(-1, -1) = (-1)^{[F:\mathbb{Q}_2]}$.

Finally, if the residue characteristic of F is odd or if F is a finite extension of \mathbb{Q}_2 and $[F : \mathbb{Q}_2]$ is even then γ takes values in the subgroup of fourth roots of unity in R^{\times} . Otherwise, if F is a finite extension of \mathbb{Q}_2 and $[F : \mathbb{Q}_2]$ is odd then γ takes values in the subgroup of eighth roots of unity in R^{\times} .

To conclude, we notice that the results of section 5 do not rely specifically on γ taking values in subgroup of fourth roots of unity in \mathbb{R}^{\times} , and therefore hold also when F is a 2-adic field. Hence, no further correction is needed.

Acknowledgements. We would like to thank prof. J. G. M. Mars for pointing out this inaccuracy in our text.

References

[CT15] Gianmarco Chinello and Daniele Turchetti. Weil representation and metaplectic groups over an integral domain. Communications in Algebra, 43(6):2388–2419, 2015.

[Iwa86] Kenkichi Iwasawa. Local class field theory. Oxford University Press, New York, 1986.