Uniformization of curves

Archimedean vs non-archimedean

Daniele Turchetti

Dalhousie University

Algant Alumni Network Symposium May 24, 2019

Uniformization of Riemann surfaces

2 Arithmetic analytic geometry

3 Universal Mumford curves over \mathbb{Z}

To a compact connected Riemann surface (= complex analytic curve) one associates a genus.

To a compact connected Riemann surface (= complex analytic curve) one associates a genus.

Theorem (Fuchs uniformization)

A compact connected Riemann surface X^{an} of genus g is isomorphic to one of the following:

- The Riemann sphere $\mathbf{P}^{1,an}_{\mathbb{C}}$ if g = 0
- A quotient \mathbb{C}/Λ for some lattice Λ if g=1
- A quotient \mathcal{H}/Γ for Γ discrete subgroup of $\mathrm{PSL}_2(\mathbb{R})$ if g > 1.

To a compact connected Riemann surface (= complex analytic curve) one associates a genus.

Theorem (Fuchs uniformization)

A compact connected Riemann surface X^{an} of genus g is isomorphic to one of the following:

- The Riemann sphere $\mathbf{P}^{1,an}_{\mathbb{C}}$ if g = 0
- A quotient \mathbb{C}/Λ for some lattice Λ if g=1
- A quotient \mathcal{H}/Γ for Γ discrete subgroup of $\mathrm{PSL}_2(\mathbb{R})$ if g > 1.

What happens for X^{an} defined over other fields: \mathbb{Q}_p , $\mathbb{C}((t))$, $\mathbb{F}_p((t))$...?

Example: elliptic curves

Let
$$E(\mathbb{C}) = \{ [x: y: z] \in \mathbf{P}^2_{\mathbb{C}} : zy^2 = x^3 + az^2x + bz^3 \}$$
 for some $a, b \in \mathbb{C}$.

Uniformization of E

 $E(\mathbb{C})$ is a group, isomorphic to \mathbb{C}/Λ , where $\Lambda = \mathbb{Z} \oplus \tau \mathbb{Z}$ is a lattice

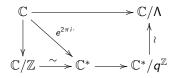
This isomorphism is of an analytic nature:

$$\mathbb{C}/\Lambda \to E(\mathbb{C})$$
$$w \mapsto \begin{cases} [\wp(w) : \wp'(w) : 1] & \text{if } w \neq 0\\ [0 : 1 : 0] & \text{if } w = 0 \end{cases}$$

where \wp is the meromorphic Weierstrass \wp -function.

p-adic uniformization of elliptic curves

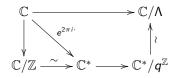
Use Schottky uniformization:



with
$$q = e^{2\pi i \tau}$$

p-adic uniformization of elliptic curves

Use Schottky uniformization:



with $q = e^{2\pi i \tau}$.

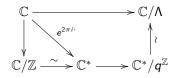
Over k non-archimedean, lattices are not discrete, but

 $k^*/q^{\mathbb{Z}}$

still makes sense for $q \in k^*$ with $|q|_p < 1$ and it is (the set of k-points of) an elliptic curve.

p-adic uniformization of elliptic curves

Use Schottky uniformization:



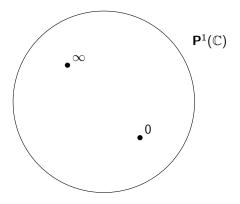
with $q = e^{2\pi i \tau}$.

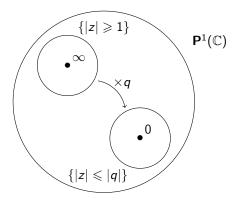
Over k non-archimedean, lattices are not discrete, but

 $k^*/q^{\mathbb{Z}}$

still makes sense for $q \in k^*$ with $|q|_p < 1$ and it is (the set of k-points of) an elliptic curve.

Over $k = \bar{k}$, not all elliptic curves arise this way: only those whose j invariant satisfies |j(E)| > 1 (Tate curves).

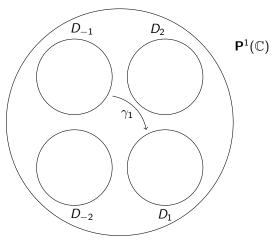




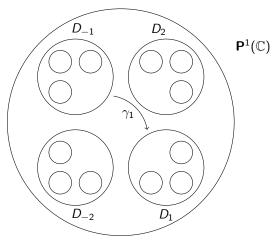
$$E \cong \mathbf{P}^{1}(\mathbb{C}) \setminus \{0, \infty\} / \begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix} \rangle$$

Let $g \ge 1$. Let $D_{\pm 1}, \ldots, D_{\pm g}$ be disjoint open discs in $\mathbf{P}^1(\mathbb{C})$. Let $\gamma_1, \ldots, \gamma_g \in \mathrm{PGL}_2(\mathbb{C})$ such that, setting $\gamma_{-i} := \gamma_i^{-1}$, we have

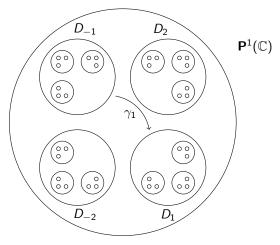
Let $g \ge 1$. Let $D_{\pm 1}, \ldots, D_{\pm g}$ be disjoint open discs in $\mathbf{P}^1(\mathbb{C})$. Let $\gamma_1, \ldots, \gamma_g \in \mathrm{PGL}_2(\mathbb{C})$ such that, setting $\gamma_{-i} := \gamma_i^{-1}$, we have



Let $g \ge 1$. Let $D_{\pm 1}, \ldots, D_{\pm g}$ be disjoint open discs in $\mathbf{P}^1(\mathbb{C})$. Let $\gamma_1, \ldots, \gamma_g \in \mathrm{PGL}_2(\mathbb{C})$ such that, setting $\gamma_{-i} := \gamma_i^{-1}$, we have



Let $g \ge 1$. Let $D_{\pm 1}, \ldots, D_{\pm g}$ be disjoint open discs in $\mathbf{P}^1(\mathbb{C})$. Let $\gamma_1, \ldots, \gamma_g \in \mathrm{PGL}_2(\mathbb{C})$ such that, setting $\gamma_{-i} := \gamma_i^{-1}$, we have



Moreover, there exists a compact subset L of $\mathbf{P}^1(\mathbb{C})$ such that

- the action of Γ on $\mathbf{P}^1(\mathbb{C}) L$ is properly discontinuous;
- $(\mathbf{P}^1(\mathbb{C}) L)/\Gamma$ is a compact Riemann surface of genus g.

Moreover, there exists a compact subset L of $\mathbf{P}^1(\mathbb{C})$ such that

- the action of Γ on $\mathbf{P}^1(\mathbb{C}) L$ is properly discontinuous;
- $(\mathbf{P}^1(\mathbb{C}) L)/\Gamma$ is a compact Riemann surface of genus g.

Every compact Riemann surface of genus g may be obtained this way.

Moreover, there exists a compact subset L of $\mathbf{P}^1(\mathbb{C})$ such that

- the action of Γ on $\mathbf{P}^1(\mathbb{C}) L$ is properly discontinuous;
- $(\mathbf{P}^1(\mathbb{C}) L)/\Gamma$ is a compact Riemann surface of genus g.

Every compact Riemann surface of genus g may be obtained this way.

Mumford adapted the theory to the non-archimedean setting. The resulting curves are called Mumford curves

Moreover, there exists a compact subset L of $\mathbf{P}^1(\mathbb{C})$ such that

- the action of Γ on $\mathbf{P}^1(\mathbb{C}) L$ is properly discontinuous;
- $(\mathbf{P}^1(\mathbb{C}) L)/\Gamma$ is a compact Riemann surface of genus g.

Every compact Riemann surface of genus g may be obtained this way.

Mumford adapted the theory to the non-archimedean setting. The resulting curves are called Mumford curves

... Where is the analysis here?

1 Uniformization of Riemann surfaces

3 Universal Mumford curves over \mathbb{Z}

Some history

- 1960's John Tate introduces rigid analytic geometry
- 1970's Michel Raynaud links rigid spaces and Grothendieck's formal geometry
- ${\sim}1990\,$ Vladimir Berkovich conceives a new theory using spaces of valuations and spectral theory
- ${\sim}2010\,$ Jérôme Poineau develops the theory of Berkovich spaces over $\mathbb Z$

Some history

1960's John Tate introduces rigid analytic geometry

- 1970's Michel Raynaud links rigid spaces and Grothendieck's formal geometry
- ${\sim}1990\,$ Vladimir Berkovich conceives a new theory using spaces of valuations and spectral theory
- ${\sim}2010\,$ Jérôme Poineau develops the theory of Berkovich spaces over $\mathbb Z$

What for?

- Arithmetic geometry: local Langlands program (étale cohomology on Berkovich spaces) and *p*-adic Hodge theory (Scholze's perfectoid spaces)
- Classical and combinatorial algebraic geometry (via connections to toric and tropical geometries)
- String theory (degeneration of Calabi-Yau, mirror symmetry, SYZ fibration)
- Dynamical systems and potential theory (dynamics on Berkovich spaces)
- p-adic differential equations (radii of convergence on Berkovich curves)
- . . .

Let $(A, \|\cdot\|)$ be a commutative Banach ring with unit. Let $n \in \mathbb{N}$.

The analytic space $\mathbf{A}_{A}^{n,\mathrm{an}}$ is the set of multiplicative semi-norms on $A[T_1, \ldots, T_n]$ bounded on A, *i.e.* maps

 $|.|: A[T_1, \ldots, T_n] \rightarrow \mathbb{R}_+$

such that

- **1** |0| = 0; **2** $\forall f, g \in A[T_1, ..., T_n], |f + g| \leq |f| + |g|;$ **3** $\forall f, g \in A[T_1, ..., T_n], |fg| = |f| |g|;$
- $\forall f \in A, |f| \leq ||f||.$

The topology on $\mathbf{A}_{A}^{n,\mathrm{an}}$

The set $\mathbf{A}_{A}^{n,\mathrm{an}}$ is endowed with the coarsest topology such that, for any f in $A[T_1, \ldots, T_n]$, the evaluation function

$$\begin{array}{cccc} \mathbf{A}_{\mathcal{A}}^{n,\mathrm{an}} & \to & \mathbb{R}_{+} \\ |.|_{x} & \mapsto & |f|_{x} \end{array}$$

is continuous.

The topology on $\mathbf{A}_{A}^{n,\mathrm{an}}$

The set $\mathbf{A}_{A}^{n,\mathrm{an}}$ is endowed with the coarsest topology such that, for any f in $A[T_1, \ldots, T_n]$, the evaluation function

$$\begin{array}{cccc} \mathbf{A}_{\mathcal{A}}^{n,\mathrm{an}} & \to & \mathbb{R}_{+} \\ |.|_{x} & \mapsto & |f|_{x} \end{array}$$

is continuous.

Theorem (Berkovich)

The space $\mathbf{A}_{A}^{n,\mathrm{an}}$ is Hausdorff and locally compact.

The topology on $\mathbf{A}_A^{n,\mathrm{an}}$

The set $\mathbf{A}_{A}^{n,\mathrm{an}}$ is endowed with the coarsest topology such that, for any f in $A[T_1, \ldots, T_n]$, the evaluation function

$$egin{array}{cccc} \mathbf{A}^{n, ext{an}}_A & o & \mathbb{R}_+ \ |.|_x & \mapsto & |f|_x \end{array}$$

is continuous.

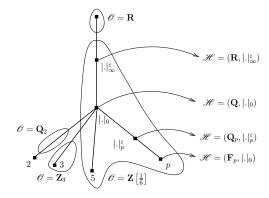
Theorem (Berkovich)

The space $\mathbf{A}_{A}^{n,\mathrm{an}}$ is Hausdorff and locally compact.

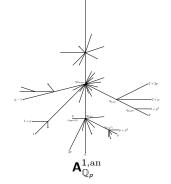
To each $x \in \mathbf{A}^{n,\mathrm{an}}_A$, we associate a residue field

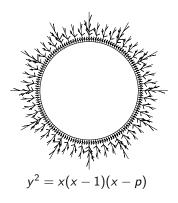
 $\mathscr{H}(x) :=$ completion of the fraction field of $A[T_1, \ldots, T_n]/\text{Ker}(|\cdot|_x)$

For every open subset $U \subset \mathbf{A}^{n,\mathrm{an}}_A$, there is a ring $\mathscr{O}(U)$ of convergent functions on U.



Curves over \mathbb{Q}_p





Theorem (Lemanissier)

The space $\mathbf{A}_{\mathbb{Z}}^{n,\mathrm{an}}$ is locally path-connected.

Theorem (Poineau)

- For every x in A^{n,an}_ℤ, the local ring O_x is henselian, noetherian, regular, excellent.
- The structure sheaf of $\mathbf{A}_{\mathbb{Z}}^{n,\mathrm{an}}$ is coherent.

Theorem (Lemanissier - Poineau)

Relative closed and open discs over $\mathbb Z$ are Stein.

1 Uniformization of Riemann surfaces

(3) Universal Mumford curves over \mathbb{Z}

Aim

Combine archimedean and non-archimedean approaches in a unique framework, using analytic geometry over $\mathbb{Z}.$

Aim

Combine archimedean and non-archimedean approaches in a unique framework, using analytic geometry over \mathbb{Z} .

If g=1, the subset $\mathscr{S}_1\subset \mathbf{A}^{1,\mathrm{an}}_{\mathbb{Z}}$ defined by

$$\mathscr{S}_1 := \{ x \in \mathbf{A}^{1,\mathrm{an}}_{\mathbb{Z}} : 0 < x(T_1) < 1 \}$$

is a universal parameter space for uniformizable elliptic curves.

Aim

Combine archimedean and non-archimedean approaches in a unique framework, using analytic geometry over \mathbb{Z} .

If g=1, the subset $\mathscr{S}_1\subset \mathbf{A}^{1,\mathrm{an}}_{\mathbb{Z}}$ defined by

$$\mathscr{S}_1 := \{ x \in \mathbf{A}^{1,\mathrm{an}}_{\mathbb{Z}} : 0 < x(T_1) < 1 \}$$

is a universal parameter space for uniformizable elliptic curves.

Theorem (Poineau - T.)

Let $g \geq 2$. There exists a connected open subset $\mathscr{S}_g \subset \mathbf{A}_{\mathbb{Z}}^{3g-3,\mathrm{an}}$ parametrizing Schottky groups of rank g with a choice of an ordered basis.

Universal Mumford curve

For g = 1, we have a *universal uniformization*

$$(\mathbf{P}^{1,\mathrm{an}}_{\mathscr{S}_1}\setminus\{0,\infty\})\to\mathscr{X}_1:=(\mathbf{P}^{1,\mathrm{an}}_{\mathscr{S}_1}\setminus\{0,\infty\})/\langle z\mapsto \mathcal{T}_1z\rangle.$$

Universal Mumford curve

For g = 1, we have a *universal uniformization*

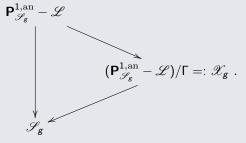
$$(\mathbf{P}^{1,\mathrm{an}}_{\mathscr{S}_1}\setminus\{0,\infty\})\to\mathscr{X}_1:=(\mathbf{P}^{1,\mathrm{an}}_{\mathscr{S}_1}\setminus\{0,\infty\})/\langle z\mapsto T_1z\rangle.$$

Theorem (Poineau - T.)

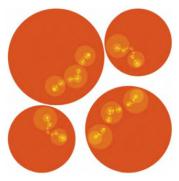
There exist $\Gamma \subset \mathrm{PGL}_2(\mathscr{O}(\mathscr{S}_g))$ and a closed subset \mathscr{L} of $\mathbf{P}^{1,\mathrm{an}}_{\mathscr{S}_{\sigma}} := \mathscr{S}_g \times_{\mathbb{Z}} \mathbf{P}^{1,\mathrm{an}}_{\mathbb{Z}}$ such that

• for each $z \in \mathscr{S}_g$, $\mathscr{L} \cap \operatorname{pr}_1^{-1}(z)$ is the limit set of Γ_z ;

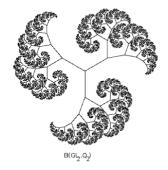
We have a commutative diagram of analytic spaces



Fractal nature of limit sets



Archimedean world



Non-archimedean world

What's next?

- Homotopy type of \mathscr{S}_g , connections with tropical geometry and geometric group theory (Culler-Vogtmann "Outer space")
- Compute Hausdorff dimension and capacity of limit sets
- Periods (q_{i,j})_{1≤i,j≤g} and Jacobians (Manin-Drinfeld, Myers)
- q-expansions of modular forms (Ichikawa)
 Schottky problem (= characterize Jacobians inside A_g)
- Gauß-Manin connections Picard-Fuchs equations (Gerritzen):

for
$$1 \leqslant i \leqslant g$$
, $\begin{cases} \nabla\left(\frac{du_i}{u_i}\right) = \sum_{j=1}^g \beta_j \otimes \frac{dq_{i,j}}{q_{i,j}}; \\ \nabla(\beta_i) = 0. \end{cases}$

 \bullet Notions of hyperbolicity and Teichmüller space over $\mathbb Z$